Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells

Abstract

The center–surround receptive-field organization in retinal ganglion cells is widely believed to result mainly from lateral inhibition at the first synaptic level (in the outer retina). Inhibition at the second synaptic level (in the inner retina) is thought to mediate more complex response properties. Here we show that much of the sustained surround antagonism in certain on-center ganglion cells results from lateral inhibition in the inner retina, via GABAergic amacrine cells, and that the lateral conduction of this signal requires voltage-gated sodium currents. Blocking lateral inhibition in the inner retina eliminates the preference of small-center ganglion cells for small stimuli but has little effect on ganglion cells with large receptive-field centers. These results illustrate how lateral inhibition at successive synaptic stages can selectively control the size of neural receptive-field centers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TTX alters the receptive-field organization of on-center ganglion cells.
Figure 2: TTX does not block lateral interactions in outer retina.
Figure 3: Effects of picrotoxin and strychnine on receptive-field profiles of on-center ganglion cells.
Figure 4: Effects of TTX, strychnine and picrotoxin on the response of an on-center ganglion cell to surround illumination.
Figure 5: TTX blocks the conductance increase produced by surround illumination.
Figure 6: Effect of TTX on receptive-field profiles of on-center ganglion cells with different receptive-field center sizes.

Similar content being viewed by others

References

  1. Werblin, F. S. Control of retinal sensitivity. II. Lateral interactions at the outer plexiform layer. J. Gen. Physiol. 63, 62– 87 (1974).

    Article  CAS  Google Scholar 

  2. Werblin, F. S. & Dowling, J.E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 331–355 (1969).

    Article  Google Scholar 

  3. Werblin, F. S. Lateral interactions at inner plexiform layer of a vertebrate retina: antagonistic responses to change. Science 175, 1008– 1010 (1972).

    Article  CAS  Google Scholar 

  4. Thibos, L. N. & Werblin, F. S. The response properties of the steady antagonistic surround in the mudpuppy retina. J. Physiol. (Lond.) 278, 79–99 ( 1978).

    Article  CAS  Google Scholar 

  5. Barlow, H. B. Summation and inhibition in the frog's retina. J. Physiol. (Lond.) 119, 69–88 ( 1953).

    Article  CAS  Google Scholar 

  6. Kuffler, S. W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    Article  CAS  Google Scholar 

  7. Mangel, S. C. Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. J. Physiol (Lond.) 44, 211–234, (1991).

    Article  Google Scholar 

  8. Naka, K. I. & Witkovsky, P. Dogfish ganglion cell discharge resulting from extrinsic polarization of the horizontal cells. J. Physiol (Lond.) 223, 449–460 (1972).

    Article  CAS  Google Scholar 

  9. Caldwell, J. H., Daw, N. W. & Wyatt, H. J. Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J. Physiol. (Lond.) 276, 277– 298 (1978).

    Article  CAS  Google Scholar 

  10. Kittila, C. A. & Massey, S. C. Pharmacology of directionally selective ganglion cells in the rabbit retina. J. Neurophysiol. 77, 675–689 (1997).

    Article  CAS  Google Scholar 

  11. Werblin, F. S., Maguire, G., Lukasiewicz, P. D., Eliasof, S. & Wu, S. M. Neural interactions mediating the detection of motion in the retina of the tiger salamander. Visual Neurosci. 1, 317–329 ( 1988).

    Article  CAS  Google Scholar 

  12. Schwartz, E. A. Organization of on-off cells in the retina of the turtle. J. Physiol. (Lond.) 230, 1–14 ( 1973).

    Article  CAS  Google Scholar 

  13. Werblin, F. S. & Copenhagen, D. R. Control of retinal sensitivity: III. Lateral interactions at the inner plexiform layer. J. Gen. Physiol. 63, 88– 110 (1974).

    Article  CAS  Google Scholar 

  14. Thibos, L. N. & Werblin, F. S. The properties of surround antagonism elicited by rotating windmill patterns in the mudpuppy retina. J. Physiol. (Lond.) 278, 101–116 (1978).

    Article  CAS  Google Scholar 

  15. Enroth-Cugell, C. & Jakiela, H. G. Suppression of cat retinal ganglion cell responses by moving patterns. J. Physiol. (Lond.). 302, 49–72 ( 1980).

    Article  CAS  Google Scholar 

  16. Jacobs, A. L. & Werblin, F. S. Spatiotemporal patterns at the retinal output. J. Neurophysiol. 80, 447 –451 (1998).

    Article  CAS  Google Scholar 

  17. Daw, N. W., Jensen, R. J. & Brunken, W. J. Rod pathways in mammalian retinae. Trends Neurosci. 13, 110–115 ( 1990).

    Article  CAS  Google Scholar 

  18. Belgum, J. H., Dvorak, D. R., McReynolds, J. S. & Miyachi, E. I. Push-pull effect of surround illumination on excitatory and inhibitory inputs to mudpuppy retinal ganglion cells. J. Physiol. (Lond.) 388, 233–243 (1987).

    Article  CAS  Google Scholar 

  19. Conners, B. & Prince, D. A. Effects of local anesthetic QX-314 on the membrane properties of hippocampal pyramidal neurons. J. Pharmacol. Exp. Ther. 220, 476–481 (1982).

    Google Scholar 

  20. Gilbertson, T. A., Borges, S. & Wilson, M. The effects of glycine and GABA on isolated horizontal cells from the salamander retina. J. Neurophysiol. 66, 2002–2013 (1991).

    Article  CAS  Google Scholar 

  21. Golard, A., Witkovsky, P. & Tranchina, D. Membrane currents of horizontal cells isolated from turtle retina. J. Neurophysiol. 68, 351– 361 (1992).

    Article  CAS  Google Scholar 

  22. Djamgoz, M. B. A. & Stell, W. K. Tetrodotoxin does not block the axonal transmission of S-potentials in goldfish retina. Neurosci. Lett. 49, 233– 238 (1984).

    Article  CAS  Google Scholar 

  23. Yang, C. Y., Maguire, G., Lukasiewicz, P., Werblin, F. & Yazulla, S. Amacrine cells in the tiger salamander retina: Physiology and neurotransmitter identification. J. Comp. Neurol. 312, 19–32 ( 1991).

    Article  CAS  Google Scholar 

  24. Hare, W. A. & Owen, W. G. Receptive field of the retinal bipolar cell: a pharmacological study in the tiger salamander. J. Neurophysiol . 76, 2005–2019 ( 1996).

    Article  CAS  Google Scholar 

  25. Cook, P. B., Lukasiewicz, P. D. & McReynolds, J. S. Action potentials are required for the lateral transmission of glycinergic transient inhibition in the amphibian retina. J. Neurosci. 18, 2301–2308 (1998).

    Article  CAS  Google Scholar 

  26. Bloomfield, S. A. Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina. J. Neurophysiol. 75, 1878–1893 (1996).

    Article  CAS  Google Scholar 

  27. Miller, R. F. & Dacheux, R. Dendritic and somatic spikes in mudpuppy amacrine cells: identification and TTX sensitivity. Brain Res. 104, 157–162 ( 1976).

    Article  CAS  Google Scholar 

  28. Lukasiewicz, P. D., Maple, B. R. & Werblin, F. S. A novel GABA receptor on bipolar cell terminals in the tiger salamander retina. J. Neurosci. 14, 1202–1212 (1994).

    Article  CAS  Google Scholar 

  29. Lukasiewicz, P. D. & Werblin, F. S. A novel GABA receptor modulates synaptic transmission from bipolar to ganglion and amacrine cells in the tiger salamander retina. J. Neurosci. 14, 1213–1223 (1994).

    Article  CAS  Google Scholar 

  30. Dong, C. J. & Werblin, F. S. Temporal contrast enhancement via GABAC feedback at bipolar terminals in the tiger salamander retina. J Neurophysiol. 79, 2171– 2180 (1998).

    Article  CAS  Google Scholar 

  31. Verwiej, J., Kamermans, M. & Spekreijse, H. Horizontal cell feed back to cones by shifting the cone calcium-current activation range. Vision Res. 36, 3943–3953 (1996).

    Article  Google Scholar 

  32. Toris, C. R., Eiesland, J. L. & Miller, R.F. Morphology of ganglion cells in the neotenous tiger salamander retina. J. Comp. Neurol. 352, 535–559 (1995).

    Article  CAS  Google Scholar 

  33. Karwoski, C. J. & Burkhardt, D. A. Ganglion cell responses of the mudpuppy retina to flashing and moving stimuli. Vision Res. 16, 1483–1495 (1976).

    Article  CAS  Google Scholar 

  34. Belgum, J. H., Dvorak, D. R. & McReynolds, J. S. Sustained synaptic input to ganglion cells of mudpuppy retina. J. Physiol. (Lond.) 326, 91–108 (1982).

    Article  CAS  Google Scholar 

  35. Arkin, M. S. & Miller, R. F. Bipolar origin of synaptic inputs to sustained OFF-ganglion cells in the mudpuppy retina. J. Neurophysiol . 60, 1122–1142 ( 1988).

    Article  CAS  Google Scholar 

  36. McReynolds, J. S. & Lukasiewicz, P. D. in Neurobiology of the Inner Retina (eds Weiler, R. & Osborne, N. N.) 209– 220 (Springer, Berlin, 1989).

    Book  Google Scholar 

  37. Belgum, J. H., Dvorak, D. R. & McReynolds, J. S. Sustained and transient synaptic inputs to on-off ganglion cells in the mudpuppy retina. J. Physiol (Lond.) 340, 599–610 (1983).

    Article  CAS  Google Scholar 

  38. Cook, P. B. & McReynolds, J. S. Modulation of sustained and transient lateral inhibitory mechanisms in the mudpuppy retina during light adaptation. J. Neurophysiol. 79, 197– 204 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grant EY01653 and core grant EY07003 from the National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Cook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, P., McReynolds, J. Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nat Neurosci 1, 714–719 (1998). https://doi.org/10.1038/3714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing