Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Restructuring the neuronal stress response with anti-glucocorticoid gene delivery

Abstract

Glucocorticoids, the adrenal steroids released during stress, compromise the ability of neurons to survive neurological injury. In contrast, estrogen protects neurons against such injuries. We designed three genetic interventions to manipulate the actions of glucocorticoids, which reduced their deleterious effects in both in vitro and in vivo rat models. The most effective of these interventions created a chimeric receptor combining the ligand-binding domain of the glucocorticoid receptor and the DNA-binding domain of the estrogen receptor. Expression of this chimeric receptor reduced hippocampal lesion size after neurological damage by 63% and reversed the outcome of the stress response by rendering glucocorticoids protective rather than destructive. Our findings elucidate three principal steps in the neuronal stress-response pathway, all of which are amenable to therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction and expression of viral vectors.
Figure 2: Transgenes alter corticosterone (cort)-induced nuclear translocation of GR in hippocampal neurons.
Figure 3: Transgene expression modulates corticosterone-induced gene expression.
Figure 4: Transgene expression protects against the deleterious effects of corticosterone (cort) in cultured hippocampal neurons treated with the excitotoxin KA.
Figure 5: Vector expression reduces KA-induced lesion size in vivo.

Similar content being viewed by others

References

  1. McEwen, B.S. et al. Stress and the brain: a paradoxical role for adrenal steroids. Vitam. Horm. 51, 371–402 (1995).

    Article  CAS  Google Scholar 

  2. Reagan, L.P. & McEwen, B.S. Controversies surrounding glucocorticoid-mediated cell death in the hippocampus. J. Chem. Neuroanat. 13, 149–167 (1997).

    Article  CAS  Google Scholar 

  3. Sapolsky, R.M. & Pulsinelli, W.A. Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science 229, 1397–1400 (1985).

    Article  CAS  Google Scholar 

  4. McEwen, B.S. Invited review: estrogens effects on the brain: multiple sites and molecular mechanisms. J. Appl. Physiol. 91, 2785–2801 (2001).

    Article  CAS  Google Scholar 

  5. White, P.C., Mune, T. & Agarwal, A.K. Functional studies of 11 β-hydroxysteroid dehydrogenase. Steroids 60, 65–68 (1995).

    Article  CAS  Google Scholar 

  6. Reul, J.M. & de Kloet, E.R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117, 2505–2511 (1985).

    Article  CAS  Google Scholar 

  7. de Kloet, E.R. et al. Brain mineralocorticoid receptor diversity: functional implications. J. Steroid Biochem. Mol. Biol. 47, 183–190 (1993).

    Article  CAS  Google Scholar 

  8. Oakley, R.H., Sar, M. & Cidlowski, J.A. The human glucocorticoid receptor β isoform: expression, biochemical properties, and putative function. J. Biol. Chem. 271, 9550–9559 (1996).

    Article  CAS  Google Scholar 

  9. Bamberger, C.M., Bamberger, A.M., de Castro, M. & Chrousos, G.P. Glucocorticoid receptor β, a potential endogenous inhibitor of glucocorticoid action in humans. J. Clin. Invest. 95, 2435–2441 (1995).

    Article  CAS  Google Scholar 

  10. Oakley, R.H., Jewell, C.M., Yudt, M.R., Bofetiado, D.M. & Cidlowski, J.A. The dominant negative activity of the human glucocorticoid receptor β isoform: specificity and mechanisms of action. J. Biol. Chem. 274, 27857–27866 (1999).

    Article  CAS  Google Scholar 

  11. Umesono, K. & Evans, R.M. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57, 1139–1146 (1989).

    Article  CAS  Google Scholar 

  12. Green, S. & Chambon, P. Oestradiol induction of a glucocorticoid-responsive gene by a chimaeric receptor. Nature 325, 75–78 (1987).

    Article  CAS  Google Scholar 

  13. Fink, S.L., Chang, L.K., Ho, D.Y. & Sapolsky, R.M. Defective herpes simplex virus vectors expressing the rat brain stress-inducible heat shock protein 72 protect cultured neurons from severe heat shock. J. Neurochem. 68, 961–969 (1997).

    Article  CAS  Google Scholar 

  14. Nishi, M. et al. Real-time imaging of glucocorticoid receptor dynamics in living neurons and glial cells in comparison with non-neural cells. Eur. J. Neurosci. 11, 1927–1936 (1999).

    Article  CAS  Google Scholar 

  15. Yudt, M.R., Jewell, C.M., Bienstock, R.J. & Cidlowski, J.A. Molecular origins for the dominant negative function of human glucocorticoid receptor β. Mol. Cell Biol. 23, 4319–4330 (2003).

    Article  CAS  Google Scholar 

  16. Molteni, R. et al. Modulation of fibroblast growth factor–2 by stress and corticosteroids: from developmental events to adult brain plasticity. Brain Res. Brain Res. Rev. 37, 249–258 (2001).

    Article  CAS  Google Scholar 

  17. Hansson, A.C. et al. c-fos reduces corticosterone-mediated effects on neurotrophic factor expression in the rat hippocampal CA1 region. J. Neurosci. 23, 6013–6022 (2003).

    Article  CAS  Google Scholar 

  18. Webster, M.K., Goya, L., Ge, Y., Maiyar, A.C. & Firestone, G.L. Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Mol. Cell Biol. 13, 2031–2040 (1993).

    Article  CAS  Google Scholar 

  19. Vasudevan, N., Kia, H.K., Inoue, S., Muramatsu, M. & Pfaff, D. Isoform specificity for oestrogen receptor and thyroid hormone receptor genes and their interactions on the NR2D gene promoter. J. Neuroendocrinol. 14, 836–842 (2002).

    Article  CAS  Google Scholar 

  20. Gibbs, R.B. Treatment with estrogen and progesterone affects relative levels of brain-derived neurotrophic factor mRNA and protein in different regions of the adult rat brain. Brain Res. 844, 20–27 (1999).

    Article  CAS  Google Scholar 

  21. Schaaf, M.J., De Kloet, E.R. & Vreugdenhil, E. Corticosterone effects on BDNF expression in the hippocampus: implications for memory formation. Stress 3, 201–208 (2000).

    Article  CAS  Google Scholar 

  22. Inoue, T., Hirai, H., Onteniente, B. & Suzuki, F. Correlated long-term increase of brain-derived neurotrophic factor and Trk B proteins in enlarged granule cells of mouse hippocampus after kainic acid injection. Neuroscience 86, 723–728 (1998).

    Article  CAS  Google Scholar 

  23. Stein, B.A. & Sapolsky, R.M. Chemical adrenalectomy reduces hippocampal damage induced by kainic acid. Brain Res. 473, 175–180 (1988).

    Article  CAS  Google Scholar 

  24. Sapolsky, R.M. Neuroprotective gene therapy against acute neurological insults. Nat. Rev. Neurosci. 4, 61–69 (2003).

    Article  CAS  Google Scholar 

  25. Hansson, A.C. et al. Gluco- and mineralocorticoid receptor–mediated regulation of neurotrophic factor gene expression in the dorsal hippocampus and the neocortex of the rat. Eur. J. Neurosci. 12, 2918–2934 (2000).

    Article  CAS  Google Scholar 

  26. Schaaf, M.J., de Jong, J., de Kloet, E.R. & Vreugdenhil, E. Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Res. 813, 112–120 (1998).

    Article  CAS  Google Scholar 

  27. Firestone, G.L., Giampaolo, J.R. & O'Keeffe, B.A. Stimulus-dependent regulation of serum and glucocorticoid inducible protein kinase (SGK) transcription, subcellular localization and enzymatic activity. Cell Physiol. Biochem. 13, 1–12 (2003).

    Article  CAS  Google Scholar 

  28. Zhou, J., Zhang, F. & Zhang, Y. Corticosterone inhibits generation of long-term potentiation in rat hippocampal slice: involvement of brain-derived neurotrophic factor. Brain Res. 885, 182–191 (2000).

    Article  CAS  Google Scholar 

  29. Nitta, A. et al. Brain-derived neurotrophic factor prevents neuronal cell death induced by corticosterone. J. Neurosci. Res. 57, 227–235 (1999).

    Article  CAS  Google Scholar 

  30. Antonawich, F.J., Miller, G., Rigsby, D.C. & Davis, J.N. Regulation of ischemic cell death by glucocorticoids and adrenocorticotropic hormone. Neuroscience 88, 319–325 (1999).

    Article  CAS  Google Scholar 

  31. Dinkel, K., MacPherson, A. & Sapolsky, R.M. Novel glucocorticoid effects on acute inflammation in the CNS. J. Neurochem. 84, 705–716 (2003).

    Article  CAS  Google Scholar 

  32. Sapolsky, R.M., Romero, L.M. & Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS  PubMed  Google Scholar 

  33. Bamberger, C.M., Bamberger, A.M., Wald, M., Chrousos, G.P. & Schulte, H.M. Inhibition of mineralocorticoid activity by the β-isoform of the human glucocorticoid receptor. J. Steroid Biochem. Mol. Biol. 60, 43–50 (1997).

    Article  CAS  Google Scholar 

  34. Carlstedt-Duke, J. Glucocorticoid receptor β: view II. Trends Endocrinol. Metab. 10, 339–342 (1999).

    Article  CAS  Google Scholar 

  35. Reichardt, H.M. & Schutz, G. Glucocorticoid signalling—multiple variations of a common theme. Mol. Cell Endocrinol. 146, 1–6 (1998).

    Article  CAS  Google Scholar 

  36. Karin, M. & Chang, L. AP-1–glucocorticoid receptor crosstalk taken to a higher level. J. Endocrinol. 169, 447–451 (2001).

    Article  CAS  Google Scholar 

  37. Cheng, C.M., Cohen, M., Wang, J. & Bondy, C.A. Estrogen augments glucose transporter and IGF1 expression in primate cerebral cortex. FASEB J. 15, 907–915 (2001).

    Article  CAS  Google Scholar 

  38. Jover, T. et al. Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J. Neurosci. 22, 2115–2124 (2002).

    Article  CAS  Google Scholar 

  39. Kelly, M.J. & Levin, E.R. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol. Metab. 12, 152–156 (2001).

    Article  CAS  Google Scholar 

  40. Garcia-Segura, L.M., Azcoitia, I. & DonCarlos, L.L. Neuroprotection by estradiol. Prog. Neurobiol. 63, 29–60 (2001).

    Article  CAS  Google Scholar 

  41. Pfaffl, M.W., Horgan, G.W. & Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36 (2002).

    Article  Google Scholar 

  42. Roy, M. & Sapolsky, R.M. The exacerbation of hippocampal excitotoxicity by glucocorticoids is not mediated by apoptosis. Neuroendocrinology 77, 24–31 (2003).

    Article  CAS  Google Scholar 

  43. Galea, L.A., Perrot-Sinal, T.S., Kavaliers, M. & Ossenkopp, K.P. Relations of hippocampal volume and dentate gyrus width to gonadal hormone levels in male and female meadow voles. Brain Res. 821, 383–391 (1999).

    Article  CAS  Google Scholar 

  44. Sapolsky, R.M. & Stein, B.A. Status epilepticus–induced hippocampal damage is modulated by glucose availability. Neurosci. Lett. 97, 157–162 (1989).

    Article  CAS  Google Scholar 

  45. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Hairston for assistance with statistical analysis; S. Brooks, I. Zemlyac and H. Wang for technical assistance with cell cultures; G. Greene for the human ERα cDNA; K. Yamamoto for the rat GR cDNA; and Z. Krozowski for the 11βHSD2 cDNA. This work was supported by a US National Institutes of Health grant and by the Adler foundation. D.K. was supported by the Human Frontier Science Program long-term fellowship and the Life Science Research Foundation fellowship. W.O.O. was supported by a National Research Service Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Kaufer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Each gene of interest was cloned downstream of the HSV a4 promoter of pa22-eGFP. This vector is packaged into HSV1 amplicons via the "a" packaging sequence. In an additional construct set the ER/GR chimera and dominant negative GR genes were cloned to create eGFP fusion proteins. (GIF 4 kb)

Supplementary Methods (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufer, D., Ogle, W., Pincus, Z. et al. Restructuring the neuronal stress response with anti-glucocorticoid gene delivery. Nat Neurosci 7, 947–953 (2004). https://doi.org/10.1038/nn1296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1296

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing