Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Proteomics in postgenomic neuroscience: the end of the beginning

Abstract

Proteomics is complementary to genomic approaches anchored in DNA and RNA. Global characterization of proteins is providing new insights into general biological structures as well as synapses, receptor complexes and other neuronal and glial features. Current challenges for proteomics of the nervous system include problems relating to sample preparation, brain complexity, limited databases and informatics tools. The combination of proteomics with other global functional genomic approaches at the levels of genome and transcriptome, together with network biology, will provide important bridges between genes, physiology and pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for mass spectrometry (MS)-based proteomic analysis.

Ivelisse Robles

Similar content being viewed by others

References

  1. Phizicky, E., Bastiaens, P.I., Zhu, H., Snyder, M. & Fields, S. Protein analysis on a proteomic scale. Nature 422, 208– 215 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Aebersold, R. & Mann, M. Mass spectrometry–based proteomics. Nature 422, 198– 207 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Tyers, M. & Mann, M. From genomics to proteomics. Nature 422, 193– 197 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Patterson, S.D. & Aebersold, R.H. Proteomics: the first decade and beyond. Nat. Genet. 33 (Suppl.) 311– 323 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Kitano, H. Computational systems biology. Nature 420, 206– 210 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Herbert, B.R. et al. What place for polyacrylamide in proteomics? Trends Biotechnol. 19, S3– S9 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Romijn, E.P., Krijgsveld, J. & Heck, A.J. Recent liquid chromatographic-(tandem) mass spectrometric applications in proteomics. J. Chromatogr. A. 1000, 589– 608 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Washburn, M.P., Wolters, D. & Yates, J.R., III . Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242– 247 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520– 526 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994– 999 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Olsen, J.V. et al. HysTag—a novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. Mol. Cell. Proteomics 3, 82– 92 (2003).

    Article  PubMed  Google Scholar 

  12. Lubec, G., Krapfenbauer, K. & Fountoulakis, M. Proteomics in brain research: potentials and limitations. Prog. Neurobiol. 69, 193– 211 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Mann, M. & Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255– 261 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Wells, L. et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics 1, 791– 804 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Soreghan, B.A., Yang, F., Thomas, S.N., Hsu, J. & Yang, A.J. High-throughput proteomic-based identification of oxidatively induced protein carbonylation in mouse brain. Pharm. Res. 20, 1713– 1720 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Schweitzer, B. & Kingsmore, S.F. Measuring proteins on microarrays. Curr. Opin. Biotechnol. 13, 14– 19 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101– 2105 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Hudson, J.R. Jr. et al. The complete set of predicted genes from Saccharomyces cerevisiae in a readily usable form. Genome Res. 7, 1169– 1173 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reboul, J. et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat. Genet. 34, 35– 41 (2003).

    Article  PubMed  Google Scholar 

  20. Stapleton, M. et al. The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes. Genome Res. 12, 1294– 1300 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martin, K. et al. Strategies and solid-phase formats for the analysis of protein and peptide phosphorylation employing a novel fluorescent phosphorylation sensor dye. Comb. Chem. High Throughput Screen. 6, 331– 339 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez, M., Li, S.S., Harper, J.W. & Songyang, Z. An oriented peptide array library (OPAL) strategy to study protein-protein interactions. J. Biol. Chem. 279 8802– 8807 (2003).

    Article  PubMed  Google Scholar 

  23. Nedelkov, D. & Nelson, R.W. Surface plasmon resonance mass spectrometry: recent progress and outlooks. Trends Biotechnol. 21, 301– 305 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Klose, J. et al. Genetic analysis of the mouse brain proteome. Nat. Genet. 30, 385– 393 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Fountoulakis, M., Juranville, J.F., Dierssen, M. & Lubec, G. Proteomic analysis of the fetal brain. Proteomics 2, 1547– 1576 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kidd, D., Liu, Y. & Cravatt, B.F. Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005– 4015 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Ohtsuka, T. et al. Cast: a novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13–1. J. Cell Biol. 158, 577– 590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Unlu, M., Morgan, M.E. & Minden, J.S. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071– 2077 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Che, F.Y. & Fricker, L.D. Quantitation of neuropeptides in Cpe(fat)/Cpe(fat) mice using differential isotopic tags and mass spectrometry. Anal. Chem. 74, 3190– 3198 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Schirmer, E.C., Florens, L., Guan, T., Yates, J.R., III & Gerace, L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301, 1380– 1382 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Mootha, V.K. et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629– 640 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141– 147 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180– 183 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Ohi, M.D. et al. Proteomics analysis reveals stable multiprotein complexes in both fission and budding yeasts containing Myb-related Cdc5p/Cef1p, novel pre-mRNA splicing factors, and snRNAs. Mol. Cell. Biol. 22, 2011– 2024 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shevchenko, A., Schaft, D., Roguev, A., Pijnappel, W.W. & Stewart, A.F. Deciphering protein complexes and protein interaction networks by tandem affinity purification and mass spectrometry: analytical perspective. Mol. Cell. Proteomics 1, 204– 212 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Gully, D., Moinier, D., Loiseau, L. & Bouveret, E. New partners of acyl carrier protein detected in Escherichia coli by tandem affinity purification. FEBS Lett. 548, 90– 96 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Forler, D. et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat. Biotechnol. 21, 89– 92 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Knuesel, M. et al. Identification of novel protein-protein interactions using a versatile mammalian tandem affinity purification expression system. Mol. Cell. Proteomics 2, 1225– 1233 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Husi, H., Ward, M.A., Choudhary, J.S., Blackstock, W.P. & Grant, S.G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661– 669 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Becamel, C. et al. Synaptic multiprotein complexes associated with 5-HT(2C) receptors: a proteomic approach. EMBO J. 21, 2332– 2342 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, M., Jiang, L.H., Wilson, H.L., North, R.A. & Surprenant, A. Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO J. 20, 6347– 6358 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, S. et al. A map of the interactome network of the metazoan C. elegans . Science 303, 540– 543 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Giot, L. et al. A protein interaction map of Drosophila melanogaster . Science 302, 1727– 1736 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399– 403 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Castellucci, V.F., Kennedy, T.E., Kandel, E.R. & Goelet, P. A quantitative analysis of 2-D gels identifies proteins in which labeling is increased following long-term sensitization in Aplysia. Neuron 1, 321– 328 (1988).

    Article  CAS  PubMed  Google Scholar 

  46. Huganir, R.L. & Greengard, P. cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 80, 1130– 1134 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae . Nat. Biotechnol. 20, 301– 305 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Yoshimura, Y. et al. Identification of protein substrates of Ca2+/calmodulin-dependent protein kinase II in the postsynaptic density by protein sequencing and mass spectrometry. Biochem. Biophys. Res. Commun. 290, 948– 954 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Raghothama, C. & Pandey, A. Absolute systems biology—measuring dynamics of protein modifications. Trends Biotechnol. 21, 467– 470 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Blagoev, B. et al. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21, 315– 318 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Korolainen, M.A., Goldsteins, G., Alafuzoff, I., Koistinaho, J. & Pirttila, T. Proteomic analysis of protein oxidation in Alzheimer's disease brain. Electrophoresis 23, 3428– 3433 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Castegna, A. et al. Proteomic identification of nitrated proteins in Alzheimer's disease brain. J. Neurochem. 85, 1394– 1401 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Huang, C.M. et al. Proteomic analysis of proteins in PC12 cells before and after treatment with nerve growth factor: increased levels of a 43-kDa chromogranin B-derived fragment during neuronal differentiation. Brain Res. Mol. Brain Res. 92, 81– 192 (2001).

    Article  Google Scholar 

  54. Maurer, M.H., Feldmann, R.E. Jr, Futterer, C.D. & Kuschinsky, W. The proteome of neural stem cells from adult rat hippocampus. Proteome Sci. 1, 4 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lafon-Cazal, M. et al. Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome. J. Biol. Chem. 278, 24438– 24448 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Mouledous, L. et al. Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics 3, 610– 615 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Husi, H. & Grant, S.G. Proteomics of the nervous system. Trends Neurosci. 24, 259– 266 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Husi, H. & Grant, S.G. Construction of a protein-protein interaction database (PPID) for synaptic biology. in Neuroscience Databases: A Practical Guide 51– 62 (Kluwer, Boston, Dordrecht, London, 2002).

    Google Scholar 

  59. Grant, S.G. Systems biology in neuroscience: bridging genes to cognition. Curr. Opin. Neurobiol. 13, 577– 582 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929– 934 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Jeong, H., Mason, S.P., Barabasi, A.L. & Oltvai, Z.N. Lethality and centrality in protein networks. Nature 411, 41– 42 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Grant, S.G.N. An integrative neuroscience program linking mouse genes to cognition and disease. in Behavioral Genetics in the Postgenomic Era (ed. J.C. Defries, R. Plomin, I.W. Craig & P. McGuffin) 123– 138 (American Psychological Association, Washington, DC, USA, 2002).

    Google Scholar 

  63. Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340– 343 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Chou, H.H. et al. Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc. Natl. Acad. Sci. USA 99, 11736– 11741 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.V. Turner for secretarial assistance and L. Yu for assistance with illustrations. J.C. and S.G.N.G. are supported by the Wellcome Trust and Genes to Cognition program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth G N Grant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, J., Grant, S. Proteomics in postgenomic neuroscience: the end of the beginning. Nat Neurosci 7, 440–445 (2004). https://doi.org/10.1038/nn1240

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing