Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptic dynamics mediate sensitivity to motion independent of stimulus details

Abstract

Humans and other animals generally perceive motion independently of the cues that define the moving object. To understand the underlying mechanisms of this generalization of stimulus attributes, we have examined the cellular properties of avian wide-field tectal neurons that are sensitive to a variety of moving stimuli but not to static stationary stimuli. This in vitro study showed phasic signal transfer at the retinotectal synapse and binary dendritic responses to synaptic inputs that interact in a mutually exclusive manner in the postsynaptic tectal neuron. A model of the tectal circuitry predicts that these two cellular properties mediate sensitivity to a wide range of dynamic spatiotemporal stimuli, including moving stimuli, but not to static stationary stimuli in a tectal neuron. The computation that is independent of stimulus detail is initiated by tectal neurons and is completed by rotundal neurons that integrate outputs from multiple tectal neurons in a directionally selective manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SGC-I morphology, location of stimulus electrodes and response to synaptic stimulation.
Figure 2: Response of SGC-I neurons to synaptic and direct stimulation of dendritic endings.
Figure 3: Structure of the SGC-I model and the visual stimuli.
Figure 4: Response of the model SGC-I cell to a static stationary (ad) or moving (eh) luminance-defined bar stimulus (Fig. 3c).
Figure 5: Response of the SGC-I model to a static stationary (ad) and uncorrelated second-order motion (eh) random-dot pattern (Fig. 3d).
Figure 6: Parameter dependence of the SGC-I model response to stationary stimuli and first- and second-order motion.

Similar content being viewed by others

References

  1. Albright, T.D. Cortical processing of visual motion. in: Visual Motion and its Role in the Stabilization of Gaze (eds. Miles, F.A. & Wallman, J.) 177–201 (Elsevier, Amsterdam, 1993).

    Google Scholar 

  2. Croner, L.J. & Albright, T.D. Seeing the big picture: integration of image cues in the primate visual system. Neuron 24, 777–789 (1999).

    Article  CAS  Google Scholar 

  3. Albright, T.D. Form-cue invariant motion processing in primate visual cortex. Science 255, 1141–1143 (1992).

    Article  CAS  Google Scholar 

  4. Olavarria, J.F., DeYoe, E.A., Knierim, J.J., Fox, J.M. & VanEssen, D.C. Neural responses to visual texture patterns in middle temporal area of the macaque monkey. J. Neurophysiol. 68, 164–181 (1992).

    Article  CAS  Google Scholar 

  5. Geesaman, B.J. & Andersen, R.A. The analysis of complex motion patterns by form/cue invariant MSTd neurons. J. Neurosci. 16, 4716–4732 (1996).

    Article  CAS  Google Scholar 

  6. Jassik-Gerschenfeld, D. & Guichard, J. Visual receptive fields of single cells in the pigeon's optic tectum. Brain Res. 40, 303–317 (1972).

    Article  CAS  Google Scholar 

  7. Frost, B.J., Cavanagh, P. & Morgan, B. Deep tectal cells in pigeons respond to kinematograms. J. Comp. Physiol. A 162, 639–647 (1988).

    Article  CAS  Google Scholar 

  8. Frost, B.J. Subcortical analysis of visual motion: Relative motion, figure-ground discrimination and self-induced optic flow. in: Visual Motion and its Role in the Stabilization of Gaze (eds. Miles, F.A. & Wallman, J.) 159–175 (Elsevier, Amsterdam, 1993).

    Google Scholar 

  9. Luksch, H., Karten, H.J., Kleinfeld, D. & Wessel, R. Chattering and differential signal processing in identified motion sensitive neurons of parallel visual pathways in chick tectum. J. Neurosci. 21, 6440–6446 (2001).

    Article  CAS  Google Scholar 

  10. Jassik-Gerschenfeld, D., Minois, F. & Conde-Courtine, F. Receptive field properties of directionally selective units in the pigeon's optic tectum. Brain Res. 24, 407–421 (1970).

    Article  CAS  Google Scholar 

  11. Frost, B.J. & Nakayama, K. Single visual neurons code opposing motion independent of direction. Science 220, 744–745 (1983).

    Article  CAS  Google Scholar 

  12. Frost, B.J. Moving background patterns alter directionally specific responses of pigeon tectal neurons. Brain Res. 151, 599–603 (1978).

    Article  CAS  Google Scholar 

  13. Luksch, H., Cox, K. & Karten, H.J. Bottlebrush dendritic endings and large dendritic fields: motion-detecting neurons in the tectofugal pathway. J. Comp. Neurol. 396, 399–414 (1998).

    Article  CAS  Google Scholar 

  14. Tömböl, T. & Németh, A. Direct connections between dendritic terminals of tectal ganglion cells and glutamate-positive terminals of presumed optic fibres in layers 4-5 of the optic tectum of Gallus domesticus. Neurobiology (Bp) 7, 45–67 (1999).

    Google Scholar 

  15. Karten, H.J., Cox, K. & Mpodozis, J. Two distinct populations of tectal neurons have unique connections within the retinotectorotundal pathway of the pigeon (Columba livia). J. Comp. Neurol. 387, 449–465 (1997).

    Article  CAS  Google Scholar 

  16. Hunt, S.P. & Webster, K.E. The projection of the retina upon the optic tectum of the pigeon. J. Comp. Neurol. 162, 433–445 (1975).

    Article  CAS  Google Scholar 

  17. Hardy, O., Leresche, N. & Jassik-Gerschenfeld, D. Morphology and laminar distribution of electrophysiologically identified cells in the pigeon's optic tectum: an intracellular study. J. Comp. Neurol. 233, 390–404 (1985).

    Article  CAS  Google Scholar 

  18. Luksch, H. & Golz, S. Anatomy and physiology of horizontal cells in the optic tectum of the chick. J. Chem. Neuroanatomy 25, 185–194 (2003).

    Article  Google Scholar 

  19. Chubb, C. & Sperling, G. Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. J. Opt. Soc. Am. A 5, 1986–2007 (1988).

    Article  CAS  Google Scholar 

  20. Lu, Z.L. & Sperling, G. Three-systems theory of human visual motion perception: review and update. J. Opt. Soc. Am. A 18, 2331–2370 (2001).

    Article  CAS  Google Scholar 

  21. Baker, C.L. Jr. & Mareschal, I. Processing of second-order stimuli in the visual cortex. Prog. Brain Res. 134, 171–191 (2001).

    Article  Google Scholar 

  22. Rodieck, R.W. The First Steps in Seeing (Sinauer, Sunderland, Massachusetts, 1998).

    Google Scholar 

  23. Meister, M. & Berry, M.J. II. The neural code of the retina. Neuron 22, 435–450 (1999).

    Article  CAS  Google Scholar 

  24. Tabata, T. & Kano, M. Heterogeneous intrinsic firing properties of vertebrate retinal ganglion cells. J. Neurophysiol. 87, 30–41 (2002).

    Article  Google Scholar 

  25. Nalbach, H.O., Wolf-Oberhollenzer, F. & Remy, M. Exploring the image. in Vision, Brain, and Behavior in Birds (eds. Zeigler H.P. & Bischof, H.J.) 25–46 (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  26. Troy, J.B. & Lee, B.B. Steady discharges of macaque retinal ganglion cells. Vis. Neurosci. 11, 111–118 (1994).

    Article  CAS  Google Scholar 

  27. Luksch, H. Cytoarchitecture of the avian optic tectum: neuronal substrate for cellular computation. Rev. Neurosci. 14, 85–106 (2003).

    Article  Google Scholar 

  28. Frost, B.J., Scilley, P.L. & Wong, S.C.P. Moving background patterns reveal double-opponency of directionally specific pigeon tectal neurons. Exp. Brain Res. 43, 173–185 (1981).

    Article  CAS  Google Scholar 

  29. Marin, G. et al. Spatial organization of the pigeon tectorotundal pathway: An interdigitating topographic arrangement. J. Comp. Neurol. 458, 361–380 (2003).

    Article  Google Scholar 

  30. Revzin, A.M. Functional localization in the nucleus rotundus. in: Neural Mechanisms of Behavior in the Pigeon (eds. Granda, A.M. & Maxwell, J.H.) 165–175 (Plenum, New York, 1981).

    Google Scholar 

  31. Wang, Y. & Frost, B.J. Time to collision is signalled by neurons in the nucleus rotundus of pigeons. Nature 356, 236–238 (1992).

    Article  CAS  Google Scholar 

  32. Sun, H. & Frost, B.J. Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat. Neurosci. 1, 296–302 (1998).

    Article  CAS  Google Scholar 

  33. Chichilnisky, E.J. & Kalmar, R.S. Temporal resolution of ensemble visual motion signals in primate retina. J. Neurosci. 23, 6681–6689 (2003).

    Article  CAS  Google Scholar 

  34. Abbott, L.F., Varela, J.A., Sen, K. & Nelson, S.B. Synaptic depression and cortical gain control. Science 275, 220–223 (1997).

    Article  CAS  Google Scholar 

  35. Tsodyks, M.V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997).

    Article  CAS  Google Scholar 

  36. Chance, F.S., Nelson, S.B. & Abbott, L.F. Synaptic depression and the temporal response characteristics of V1 cells. J. Neurosci. 18, 4785–4799 (1998).

    Article  CAS  Google Scholar 

  37. Goldman, M.S., Maldonado, P. & Abbott, L.F. Redundancy reduction and sustained firing with stochastic depressing synapses. J. Neurosci. 22, 584–591 (2002).

    Article  CAS  Google Scholar 

  38. Freeman, T.C.B., Durand, S., Kiper, D.C. & Carandini, M. Suppression without inhibition in visual cortex. Neuron 35, 759–771 (2002).

    Article  CAS  Google Scholar 

  39. Carandini, M., Heeger, D.J. & Senn, W.A Synaptic explanation of suppression in visual cortex. J. Neurosci. 22, 10053–10065 (2002).

    Article  CAS  Google Scholar 

  40. Chung, S., Li, X. & Nelson, S.B. Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34, 437–446 (2002).

    Article  CAS  Google Scholar 

  41. Cook, D.L., Schwindt, P.C., Grande, L.A. & Spain, W.J. Synaptic depression in the localization of sound. Nature 421, 66–70 (2003).

    Article  CAS  Google Scholar 

  42. Lettvin, J.Y., Maturana, H.R., McCulloch, W.S. & Pitts, W.H. What the frog's eye tells the frog's brain. Proc. IRE 47, 1940–1951 (1959).

    Article  Google Scholar 

  43. Palanca, B.J.A. & DeAngelis, G.C. Macaque middle temporal neurons signal depth in the absence of motion. J. Neurosci. 23, 7647–7658 (2003).

    Article  CAS  Google Scholar 

  44. Newsome, W.T., Britten, K.H. & Movshon, J.A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    Article  CAS  Google Scholar 

  45. Croner, L.J. & Albright, T.D. Segmentation by color influences responses of motion-sensitive neurons in the cortical middle temporal visual area. J. Neurosci. 19, 3935–3951 (1999).

    Article  CAS  Google Scholar 

  46. Wilson, H.R. The role of second-order motion signals in coherence and transparency: higher-order processing in the visual system. Ciba Foundation Symposium 184, 227–244 (1994).

    CAS  PubMed  Google Scholar 

  47. Orger, M.B., Smear, M.C., Anstis, S.M. & Baier, H. Perception of Fourier and non-Fourier motion by larval zebrafish. Nat. Neurosci. 3, 1128–1133 (2000).

    Article  CAS  Google Scholar 

  48. Roeser, T. & Baier, H. Visuomotor behaviors in larval zebrafish after GFP-guided laser ablation of the optic tectum. J. Neurosci. 23, 3726–3734 (2003).

    Article  CAS  Google Scholar 

  49. Demb, J.B., Zaghloul, K. & Sterling, P. Cellular basis for the response to second-order motion cues in Y retinal ganglion cells. Neuron 32, 711–721 (2001).

    Article  CAS  Google Scholar 

  50. Hellmann, B. & Güntürkün, O. Structural organization of parallel information processing within the tectofugal visual system of the pigeon. J. Comp. Neurol. 429, 94–112 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H.J. Karten and D. Kleinfeld for support during the collection of preliminary data, A. Mahani for comments and W.B. Kristan, H. Wagner, G. DeAngelis, M. Ariel, P. Lukasiewicz, J. Sanes and A. Carlsson for critical reading of the manuscript. The work was supported by grants from Deutsche Forschungsgemeinschaft to H.L. and Whitehall Foundation and McDonnell Center for Higher Brain Function to R.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Wessel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luksch, H., Khanbabaie, R. & Wessel, R. Synaptic dynamics mediate sensitivity to motion independent of stimulus details. Nat Neurosci 7, 380–388 (2004). https://doi.org/10.1038/nn1204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing