Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neurocomputational models of working memory

Abstract

During working memory tasks, the firing rates of single neurons recorded in behaving monkeys remain elevated without external cues. Modeling studies have explored different mechanisms that could underlie this selective persistent activity, including recurrent excitation within cell assemblies, synfire chains and single-cell bistability. The models show how sustained activity can be stable in the presence of noise and distractors, how different synaptic and voltage-gated conductances contribute to persistent activity, how neuromodulation could influence its robustness, how completely novel items could be maintained, and how continuous attractor states might be achieved. More work is needed to address the full repertoire of neural dynamics observed during working memory tasks.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Delay-period activity recorded in the prefrontal cortex (PFC) in vivo.
Figure 2: A firing rate model28,30,31,34 of delay-period activity in networks of PFC neurons.
Figure 3: (Asynchronous) delay activity at physiologically plausible firing rates is not stable if excitatory synapses are too fast.
Figure 4: Maintenance of selective working memory by NMDA-receptor-induced cellular bistability.

References

  1. Baddeley, A. Human Memory (Lawrence Erlbaum, Hove, UK, 1990).

    Google Scholar 

  2. Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe 3rd edn. (Lippincott-Raven, New York, 1997).

    Google Scholar 

  3. Cohen J. D. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608 (1997).

    CAS  Article  Google Scholar 

  4. Dehaene, S., Jonides, J., Smith, E. E. & Spitzer, M. in Fundamental Neuroscience (eds. Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L. & Squire, L. R.) 1543–1564 (Academic, San Diego, California, 1999).

    Google Scholar 

  5. Fuster, J. M. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol. 36 , 61–78 (1973).

    CAS  Article  Google Scholar 

  6. Goldman-Rakic, P.S. in Models of Information Processing in the Basal Ganglia (eds. Houk, J. C., Davis, J. L. & Beiser, D. G.) 131– 148 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  7. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P.S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    CAS  Article  Google Scholar 

  8. Quintana, J., & Fuster, J. M. From perception to action: temporal integrative functions of prefrontal and parietal neurons. Cereb. Cortex 9, 213–221 ( 1999).

    CAS  Article  Google Scholar 

  9. Rainer, G., Asaad, W. F. & Miller, E. K. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393, 577–579 (1998).

    CAS  Article  Google Scholar 

  10. Asaad, W. F., Rainer, G. & Miller, E. K. Neural activity in the primate prefrontal cortex during associative learning. Neuron 21, 1399–1407 (1998).

    CAS  Article  Google Scholar 

  11. Boussaoud, D. & Wise, S. P. Primate frontal cortex: effects of stimulus and movement. Exp. Brain Res. 95, 28–40 (1993).

    CAS  PubMed  Google Scholar 

  12. Fuster, J. M., Bodner, M. & Kroger, J. K. Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405, 347– 351 (2000).

    CAS  Article  Google Scholar 

  13. Rao, S. C., Rainer, G. & Miller, E. K. Integration of what and where in the primate prefrontal cortex. Science 276, 821– 824 (1997).

    CAS  Article  Google Scholar 

  14. Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996).

    CAS  Article  Google Scholar 

  15. Constantinidis, C. & Steinmetz, M. A. Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. J. Neurophysiol. 76, 1352– 1355 (1996).

    CAS  Article  Google Scholar 

  16. McFarland, J. L. & Fuchs, A. F. Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. J. Neurophysiol. 68, 319–332 ( 1992).

    CAS  Article  Google Scholar 

  17. Miller, E. K., Li, L. & Desimone, R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurosci. 13, 1460–1478 (1993).

    CAS  Article  Google Scholar 

  18. Watanabe, T. & Niki, H. Hippocampal unit activity and delayed response in the monkey. Brain Res. 325, 241–254 (1985).

    CAS  Article  Google Scholar 

  19. Braver, T. S., Barch, D. M. & Cohen, J. D. Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol. Psychiatry 46, 312–328 (1999).

    CAS  Article  Google Scholar 

  20. Guigon, E., Dorizzi, B., Burnod, Y. & Schultz, W. Neural correlates of learning in the prefrontal cortex of the monkey: a predictive model. Cereb. Cortex 5, 135–147 (1995).

    CAS  Article  Google Scholar 

  21. Moody, S. L., Wise, S. P., Di Pellegrino, G. & Zipser, D. A model that accounts for activity in primate frontal cortex during a delayed matching-to-sample task. J. Neurosci. 18, 399–410 (1998).

    CAS  Article  Google Scholar 

  22. Zipser, D., Kehoe, B., Littlewort, G. & Fuster, J. A spiking network model of short-term active memory. J. Neurosci. 13, 3406–3420 ( 1993).

    CAS  Article  Google Scholar 

  23. Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949 ).

    Google Scholar 

  24. Abeles, M. Corticonics: Neural Circuits of the Cerebral Cortex (Cambridge Univ. Press, Cambridge, 1991).

    Book  Google Scholar 

  25. Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z. & Golowasch, J. Memory from the dynamics of intrinsic membrane currents. Proc. Natl. Acad. Sci. USA 93, 13481–13486 (1996).

    CAS  Article  Google Scholar 

  26. Lisman, J. E., Fellous, J. M. & Wang, X.-J. A role for NMDA-receptor channels in working memory . Nat. Neurosci. 1, 273– 275 (1998).

    CAS  Article  Google Scholar 

  27. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).

    CAS  Article  Google Scholar 

  28. Amit, D. J. & Brunel, N. Learning internal representations in an attractor neural network with analogue neurons. Network Comput. Neural Systems 6, 359–388 (1995).

    Article  Google Scholar 

  29. Amit, D. J. & Brunel, N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex . Cereb. Cortex. 7, 237– 252 (1997).

    CAS  Article  Google Scholar 

  30. Amit, D. J. & Tsodyks, M.V. Quantitative study of attractor neural networks retrieving at low spike rates: I. Substrate-spikes, rates and neuronal gain. Network 2, 259– 273 (1991).

    Article  Google Scholar 

  31. Amit, D. J. & Tsodyks, M.V. Quantitative study of attractor neural networks retrieving at low spike rates: II. Low-rate retrieval in symmetric networks. Network 2, 275– 294 (1991).

    Article  Google Scholar 

  32. Amit, D. J., Brunel, N. & Tsodyks, M. V. Correlations of cortical hebbian reverberations: theory versus experiment. J. Neurosci. 14, 6435–6445 (1994).

    CAS  Article  Google Scholar 

  33. Amit, D. J., Fusi, S. & Yakovlev, V. Paradigmatic working memory (attractor) cell in IT cortex . Neural Comput. 9, 1071– 1092 (1997).

    CAS  Article  Google Scholar 

  34. Durstewitz, D., Kelc, M. & Güntürkün, O. A neurocomputational theory of the dopaminergic modulation of working memory functions. J. Neurosci. 19, 2807–2822 (1999).

    CAS  Article  Google Scholar 

  35. Gonzalez-Burgos, G., Barrionuevo, G. & Lewis, D. A. Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. Cereb. Cortex 10, 82–92 (2000).

    CAS  Article  Google Scholar 

  36. Markram, H., Lübke, J., Frotscher, M., Roth. A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (Lond.) 500, 409– 440 (1997).

    CAS  Article  Google Scholar 

  37. Melchitzky, D. S., Sesack, S. R., Pucak, M. L. & Lewis, D. A. Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex. J. Comp. Neurol. 390, 211–224 (1998).

    CAS  Article  Google Scholar 

  38. Funahashi, S. & Inoue, M. Neuronal interactions related to working memory processes in the primate prefrontal cortex revealed by cross-correlation analysis. Cereb. Cortex 10, 535– 551 (2000).

    CAS  Article  Google Scholar 

  39. Goldman-Rakic, P.S. Topography of cognition: parallel distributed networks in primate association cortex. Annu. Rev. Neurosci. 11, 137– 156 (1988).

    CAS  Article  Google Scholar 

  40. Miyashita Y. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335, 817– 820 (1988).

    CAS  Article  Google Scholar 

  41. Rosenkilde, C. E., Rosvold, H. E. & Mishkin, M. Time discrimination with positional responses after selective prefrontal lesions in monkeys. Brain Res. 210, 129–144 (1981).

    CAS  Article  Google Scholar 

  42. Sawaguchi, T., Matsumura, M. & Kubota, K. Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. J. Neurophysiol. 63, 1401–1412 (1990).

    CAS  Article  Google Scholar 

  43. Rainer, G., Rao, S. C. & Miller, E. K. Prospective coding for objects in primate prefrontal cortex. J. Neurosci. 19, 5493– 5505 (1999).

    CAS  Article  Google Scholar 

  44. Wang, X. J. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19, 9587 –9603 (1999).

    CAS  Article  Google Scholar 

  45. Durstewitz, D., Seamans, J. K. & Sejnowski T. J. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J. Neurophysiol. 83, 1733–1750 (2000).

    CAS  Article  Google Scholar 

  46. Compte, A., Brunel, N., Goldman-Rakic, P. S. & Wang, X.-J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000).

    CAS  Article  Google Scholar 

  47. Scherzer, C. R. et al. Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain: hippocampus and cortex. J. Comp. Neurol. 390, 75–90 (1998).

    CAS  Article  Google Scholar 

  48. Aura, J. & Riekkinen, P. J. Blockade of NMDA receptors located at the dorsomedial prefrontal cortex impairs spatial working memory in rats. Neuroreport 10, 243– 248 (1999).

    CAS  Article  Google Scholar 

  49. Dudkin, K. N., Kruchinin, V. K. & Chueva, I. V. Effect of NMDA on the activity of cortical glutaminergic structures in delayed visual differentiation in monkeys. Neurosci. Behav. Physiol. 27, 153–158 (1997).

    CAS  Article  Google Scholar 

  50. Schultz, W., Apicella, P. & Ljungberg, T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13, 900–913 (1993).

    CAS  Article  Google Scholar 

  51. Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature 382, 629–632 (1996).

    CAS  Article  Google Scholar 

  52. Müller, U., von Cramon, D. Y. & Pollmann, S. D1- versus D2-receptor modulation of visuospatial working memory in humans. J. Neurosci. 18, 2720– 2728 (1998).

    Article  Google Scholar 

  53. Sawaguchi, T. & Goldman-Rakic, P. S. The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J. Neurophysiol. 71, 515– 528 (1994).

    CAS  Article  Google Scholar 

  54. Seamans, J. K., Floresco, S. B. & Phillips, A. G. D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J. Neurosci. 18, 1613– 1621 (1998).

    CAS  Article  Google Scholar 

  55. Zahrt, J., Taylor, J. R., Mathew, R. G. & Arnsten, A. F. T. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J. Neurosci. 17, 8528–8535 (1997).

    CAS  Article  Google Scholar 

  56. Seamans, J.K., Durstewitz, D., Christie, B., Stevens, C. F. & Sejnowski, T. J. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc. Natl. Acad. Sci. USA (in press).

  57. Gorelova, N. A. & Yang, C. R. Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. J. Neurophysiol. 84, 75–87 (2000).

    CAS  Article  Google Scholar 

  58. Yang, C. R. & Seamans, J. K. Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J. Neurosci. 16, 1922–1935 (1996).

    CAS  Article  Google Scholar 

  59. Zheng, P., Zhang, X. X., Bunney, B. S. & Shi, W. X. Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine. Neuroscience 91, 527–535 (1999).

    CAS  Article  Google Scholar 

  60. Rao, S. G., Williams, G. V. & Goldman-Rakic, P. S. Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory . J. Neurosci. 20, 485– 494 (2000).

    CAS  Article  Google Scholar 

  61. Gulledge, A. T. & Jaffe, D. B. Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex. J. Neurosci. 18, 9139–9151 (1998).

    CAS  Article  Google Scholar 

  62. Diesmann, M., Gewaltig, M. O. & Aertsen, A. Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529– 533 (1999).

    CAS  Article  Google Scholar 

  63. Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278, 1950– 1953 (1997).

    CAS  Article  Google Scholar 

  64. Domjan, M. & Burkhard, B. The Principles of Learning and Behavior 3rd ed. (Brooks/Cole, Pacific Grove, California, 1993).

    Google Scholar 

  65. Lisman, J. E. & Idiart, A. P. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995).

    CAS  Article  Google Scholar 

  66. O'Reilly R. C., Braver T. S. & Cohen J. D. in Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (eds. Miyake, A. & Shah, P.) 375–411 (Cambridge Univ. Press, Cambridge, 1999).

    Book  Google Scholar 

  67. Haj-Dahmane, S. & Andrade, R. Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex. J. Neurophysiol. 80, 1197–1210 (1998).

    CAS  Article  Google Scholar 

  68. Broersen, L. M. et al. Effects of local application of dopaminergic drugs into the dorsal part of the medial prefrontal cortex of rats in a delayed matching to position task: comparison with local cholinergic blockade. Brain Res. 645, 113–122 (1994).

    CAS  Article  Google Scholar 

  69. Wilson, H. R. & Cowan, J. D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973).

    CAS  Article  Google Scholar 

  70. Amari, S. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977).

    CAS  Article  Google Scholar 

  71. Goodridge, J. P., Dudchenko, P. A., Worboys, K. A., Golob, E. J. & Taube, J. S. Cue control and head direction cells. Behav. Neurosci. 112, 749– 761 (1998).

    CAS  Article  Google Scholar 

  72. Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126 (1996).

    CAS  Article  Google Scholar 

  73. Camperi, M. & Wang, X.-J. A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. J. Comput. Neurosci. 5, 383–405 (1998).

    CAS  Article  Google Scholar 

  74. Romo, R., Brody, C. D., Hernández, A. & Lemus, L. Neuronal correlates of parametric working memory in the prefrontal cortex . Nature 399, 470–473 (1999).

    CAS  Article  Google Scholar 

  75. Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons . Neuron 26, 259–271 (2000).

    CAS  Article  Google Scholar 

  76. Milner, B. & Petrides, M. Behavioural effects of frontal-lobe lesions in man. Trends Neurosci. 7, 403– 407 (1984).

    Article  Google Scholar 

  77. Funahashi, S., & Kubota, K. Working memory and prefrontal cortex. Neurosci Res. 21, 1–11 (1994).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

D.D. was funded through a research stipend from the Deutsche Forschungsgemeinschaft (DU 354/1-1). J.K.S and T.J.S. were supported by the Howard Hughes Medical Institute. Thanks to Emilio Salinas, Paul Tiesinga, Sabine Windmann and Kechen Zhang for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrence J. Sejnowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Durstewitz, D., Seamans, J. & Sejnowski, T. Neurocomputational models of working memory. Nat Neurosci 3, 1184–1191 (2000). https://doi.org/10.1038/81460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81460

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing