Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptic activation of kainate receptors on hippocampal interneurons

Abstract

Although kainate receptor activation has been known to evoke epileptiform activity, little is known about the role of kainate receptors in synaptic transmission. Here we report that kainate (KA) receptors are present on interneurons and, when activated, cause a large increase in the frequency of spontaneous inhibitory postsynaptic currents (IPSCs) driven by action potentials. Stimulation of excitatory afferents generates a pharmacologically identifiable synaptic current mediated by KA receptors in interneurons. This synaptic current is similar to that mediated by AMPA receptors in its response to short stimulus trains, current–voltage relations and coefficient of variation, but it is much smaller in peak amplitude and much slower. KA application also considerably depresses evoked IPSCs. This depression seems to be in large part an indirect consequence of the repetitive firing evoked by the activation of the interneuronal somatic/dendritic KA receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KA receptor activation increases the frequency of TTX-sensitive sIPSCs.
Figure 2: Kainate receptor activation depolarizes interneurons and increases interneuronal spiking rate.
Figure 3: EPSCs in interneurons, but not in pyramidal cells, have a KA receptor-mediated component.
Figure 4: EPSCAMPA and EPSCKA in interneurons have different pharmacological properties but similar release properties.
Figure 5: Current–voltage relations of the EPSCAMPA and EPSCKA are similar.
Figure 6: The stimulus-evoked monosynaptic IPSC on pyramidal cells is rapidly and reversibly reduced by KA receptor activation.
Figure 7: KA receptor activation has no effect on miniature IPSCs in TTX.
Figure 8: The KA-induced depression of stimulus-evoked IPSCs results from the KA-induced increase in interneuronal spiking.

Similar content being viewed by others

References

  1. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31– 108 (1994).

    Article  CAS  Google Scholar 

  2. Watkins, J. C. & Evans, R. H. Excitatory amino acid transmitters . Annu. Rev. Pharmacol. Toxicol. 21, 165 –204 (1981).

    Article  CAS  Google Scholar 

  3. Sommer, B. & Seeburg, P. H. Glutamate receptor channels: novel properties and new clones. Trends Pharmacol. Sci. 13, 291–296 (1992).

    Article  CAS  Google Scholar 

  4. Bettler, B. & Mulle, C. Review: Neurotransmitter receptors II. AMPA and kainate receptors. Neuropharmacology 34 , 123–139 (1995).

    Article  CAS  Google Scholar 

  5. Mayer, M. Kainate receptors. Finding homes at synapses. Nature 389, 542–543 (1997).

    Article  CAS  Google Scholar 

  6. Lerma,J. Kainate reveals its targets. Neuron 19, 1155– 1158 (1997).

    Article  CAS  Google Scholar 

  7. Paternain, A. V., Morales, M. & Lerma, J. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185–189 (1995).

    Article  CAS  Google Scholar 

  8. Huettner, J. E. Glutamate receptor channels in rat DRG neurons: activation by kainate and quisqualate and blockade of desensitization by ConA. Neuron 5, 255–266 (1990).

    Article  CAS  Google Scholar 

  9. Lerma, J., Paternain, A. V., Naranjo, J. R. & Mellstrom, B. Functional kainate-selective glutamate receptors in cultured hippocampal neurons . Proc. Natl. Acad. Sci. USA 90, 11688– 11692 (1993).

    Article  CAS  Google Scholar 

  10. Ruano, D., Lambolez, B., Rossier, J., Paternain, A. V. & Lerma, J. Kainate receptor subunits expressed in single cultured hippocampal neurons: molecular and functional variants by RNA editing. Neuron 14, 1009– 1017 (1995).

    Article  CAS  Google Scholar 

  11. Wilding, T. J. & Huettner, J. E. Activation and desensitization of hippocampal kainate receptors. J. Neurosci. 17, 2713–2721 (1997).

    Article  CAS  Google Scholar 

  12. Patneau, D. K., Wright, P. W., Winters, C., Mayer, M. L. & Gallo, V. Glial cells of the oligodendrocyte lineage express both kainate- and AMPA-preferring subtypes of glutamate receptor . Neuron 12, 357–371 (1994).

    Article  CAS  Google Scholar 

  13. Castillo, P. E., Malenka, R. C. & Nicoll, R. A. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388, 182–186 (1997).

    Article  CAS  Google Scholar 

  14. Vignes, M. & Collingridge, G. L. The synaptic activation of kainate receptors. Nature 388, 179– 182 (1997).

    Article  CAS  Google Scholar 

  15. Chittajallu, R. et al. Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379, 78– 81 (1996).

    Article  CAS  Google Scholar 

  16. Clarke, V. R. et al. A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission. Nature 389, 599– 603 (1997).

    Article  CAS  Google Scholar 

  17. Rodriguez-Moreno, A., Herreras, O. & Lerma, J. Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 19, 893–901 (1997).

    Article  CAS  Google Scholar 

  18. Rodriguez-Moreno, A. & Lerma, J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20, 1211–1218 (1998).

    Article  CAS  Google Scholar 

  19. Alger, B. E. & Nicoll, R. A. Spontaneous inhibitory postsynaptic potentials in hippocampus: mechanism for tonic inhibition. Brain Res. 200, 195–200 (1980).

    Article  CAS  Google Scholar 

  20. Alger, B. E. et al. Retrograde signalling in depolarization-induced suppression of inhibition in rat hippocampal CA1 cells. J. Physiol. (Lond.) 496, 197–209 (1996).

    Article  CAS  Google Scholar 

  21. Otis, T. S., Staley, K. J. & Mody, I. Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res. 545 , 142–150 (1991).

    Article  CAS  Google Scholar 

  22. Wilding, T. J. & Huettner, J. E. Differential antagonism of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines. Mol. Pharmacol. 47, 582–587 (1995).

    CAS  PubMed  Google Scholar 

  23. Burnashev, N., Villarroel, A. & Sakmann, B. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J. Physiol. 496, 165–173 (1996).

    Article  CAS  Google Scholar 

  24. Scanziani, M., Salin, P. A., Vogt, K. E., Malenka, R. C. & Nicoll, R. A. Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature 385, 630–634 (1997).

    Article  CAS  Google Scholar 

  25. Howe, J. R. Homomeric and heteromeric ion channels formed from the kainate-type subunits GluR6 and KA2 have very small, but different, unitary conductances. J. Neurophysiol. 76, 510–519 (1996).

    Article  CAS  Google Scholar 

  26. Swanson, G. T., Feldmeyer, D., Kaneda, M. & Cull-Candy, S. G. Effect of RNA editing and subunit co-assembly on single-channel properties of recombinant kainate receptors. J. Physiol. (Lond.) 492, 129–142 (1996).

    Article  CAS  Google Scholar 

  27. Jones, M. V. & Westbrook, G. L. Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15, 181–191 (1995).

    Article  CAS  Google Scholar 

  28. Kamiya, H., & Ozawa, S. Kainate receptor-mediated inhibition of presynaptic Ca2+ influx and EPSP in area CA1 of the rat hippocampus. J. Physiol. (Lond.) 509, 833 –845 (1998).

    Article  CAS  Google Scholar 

  29. Robinson, J. H. & Deadwyler, S. A. Kainic acid produces depolarisation of CA3 pyramidal cells in the in vitro hippocampal slice. Brain Res. 221, 117– 127 (1981).

    Article  CAS  Google Scholar 

  30. Westbrook, G. L. & Lothman, E. W. Cellular and synaptic basis of kainic acid-induced hippocampal epileptiform activity. Brain Res. 273, 97–109 (1983).

    Article  CAS  Google Scholar 

  31. Fisher, R. S. & Alger, B. E. Electrophysiological mechanisms of kainic acid-induced epileptiform activity in the rat hippocampal slice . J. Neurosci. 4, 1312– 1323 (1984).

    Article  CAS  Google Scholar 

  32. Cornish, S. M. & Wheal, H. V. Long-term loss of paired pulse inhibition in the kainic acid-lesioned hippocampus of the rat. Neuroscience 28, 563– 571 (1989).

    Article  CAS  Google Scholar 

  33. Lancaster, B. & Wheal, H. V. Chronic failure of inhibition of the CA1 area of the hippocampus following kainic acid lesions of the CA3/4 area. Brain Res. 295, 317– 324 (1984).

    Article  CAS  Google Scholar 

  34. Franck, FNM>J. E., Kunkel, D. D., Baskin, D. G. & Schwartzkroin, P. A. Inhibition in kainate-lesioned hyperexcitable hippocampi: physiologic, autoradiographic, and immunocytochemical observations. J. Neurosci. 8 , 1991–2002 (1988).

    Article  CAS  Google Scholar 

  35. Ben-Ari, Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375–403 (1985).

    Article  CAS  Google Scholar 

  36. Geiger, J. R., Lübke, J., Roth, A., Frotscher, M. & Jonas, P. Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18, 1009–1023 (1997).

    Article  CAS  Google Scholar 

  37. Ali, A. B., Deuchars, J., Pawelzik, H. & Thomson, A. M. CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J. Physiol. (Lond.) 507, 201–217 (1998).

    Article  CAS  Google Scholar 

  38. Sik, A., Tamamaki, N. & Freund, T. F. Complete axon arborization of a single CA3 pyramidal cell in the rat hippocampus, and its relationship with postsynaptic parvalbumin-containing interneurons. Eur. J. Neurosci. 5, 1719– 1728 (1993).

    Article  CAS  Google Scholar 

  39. Häusser, M. & Clark, B. A. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration . Neuron 19, 665–678 (1997).

    Article  Google Scholar 

  40. Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    Article  CAS  Google Scholar 

  41. Wyllie, D. J. A., Manabe, T. & Nicoll, R. A. A rise in postsynaptic Ca2+ potentiates miniature excitatory postsynaptic currents and AMPA responses in hippocampal neurons. Neuron 12, 127– 138 (1994).

    Article  CAS  Google Scholar 

  42. Bekkers, J. M. & Stevens, C. F. The nature of quantal transmission at central excitatory synapses. Adv. Second Messenger Phosphoprotein Res. 29, 261– 273 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Nicoll-Malenka lab for discussions, D. Selig for providing on-line data acquisition software and H. Czerwonka for secretarial support. M.F. is supported by an NIH postdoctoral training grant in Neuroscience (T32NS07067). R.A.N. is a member of the Keck Center for Integrative Neuroscience and the Silvio Conte Center for Neuroscience Research. R.C.M. is a member of the Center for Neurobiology and Psychiatry, and the Center for the Neurobiology of Addiction. R.A.N. is supported by grants from the NIH. R.C.M. is supported by grants from the NIH, HFSP, and an Investigator Award from the McKnight Endowment Fund for Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Nicoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frerking, M., Malenka, R. & Nicoll, R. Synaptic activation of kainate receptors on hippocampal interneurons . Nat Neurosci 1, 479–486 (1998). https://doi.org/10.1038/2194

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/2194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing