Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Swinging in the brain: shared neural substrates for behaviors related to sequencing and music

Abstract

Music consists of precisely patterned sequences of both movement and sound that engage the mind in a multitude of experiences. We move in response to music and we move in order to make music. Because of the intimate coupling between perception and action, music provides a panoramic window through which we can examine the neural organization of complex behaviors that are at the core of human nature. Although the cognitive neuroscience of music is still in its infancy, a considerable behavioral and neuroimaging literature has amassed that pertains to neural mechanisms that underlie musical experience. Here we review neuroimaging studies of explicit sequence learning and temporal production—findings that ultimately lay the groundwork for understanding how more complex musical sequences are represented and produced by the brain. These studies are also brought into an existing framework concerning the interaction of attention and time-keeping mechanisms in perceiving complex patterns of information that are distributed in time, such as those that occur in music.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the complexity of behavioral tasks examined in 34 neuroimaging studies of sequence learning and/or time-interval production.
Figure 2: Patterns of responsiveness of different brain areas across levels of temporal and ordinal complexity.
Figure 3: Projection of activation loci reported in 34 neuroimaging studies of sequencing (filled spheres) and 10 studies using musical stimuli and tasks (yellow outlines).
Figure 4: Cumulative proportions of the total number of reported activations for each brain region as a function of increasing complexity.

Similar content being viewed by others

References

  1. Fuster, J.M. The prefrontal cortex - an update: time is of the essence. Neuron 30, 319–333 (2001).

    Article  CAS  Google Scholar 

  2. Rizzolatti, G. & Luppino, G. The cortical motor system. Neuron 31, 889–901 (2001).

    Article  CAS  Google Scholar 

  3. Ivry, R.B. The representation of temporal information in perception and motor control. Curr. Opin. Neurobiol. 6, 851–857 (1996).

    Article  CAS  Google Scholar 

  4. Ivry, R.B. & Richardson, T.C. Temporal control and coordination: the multiple timer model. Brain Cogn. 48, 117–132 (2002).

    Article  Google Scholar 

  5. Schöner, G. Timing, clocks, and dynamical systems. Brain Cogn. 48, 31–51 (2002).

    Article  Google Scholar 

  6. Krampe, R.T., Engbert, R. & Kliegl, R. Representational models and nonlinear dynamics: irreconcilable approaches to human movement timing and coordination or two sides of the same coin? Brain Cogn. 48, 1–6 (2002).

    Article  Google Scholar 

  7. Essens, P.J. & Povel, D.J. Metrical and nonmetrical representations of temporal patterns. Percept. Psychophys. 37, 1–7 (1985).

    Article  CAS  Google Scholar 

  8. Povel, D.J. & Essens, P. Perception of temporal patterns. Music Percept. 2, 411–440 (1985).

    Article  Google Scholar 

  9. Large, E.W. On synchronizing movements to music. Hum. Mov. Sci. 19, 527–566 (2000).

    Article  Google Scholar 

  10. Large, E.W. & Palmer, C. Perceiving temporal regularity in music. Cognit. Sci. 26, 1–37 (2002).

    Article  Google Scholar 

  11. Repp, B.H. Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization. J. Exp. Psychol. Hum. Percept. Perform. 27, 600–621 (2001).

    Article  CAS  Google Scholar 

  12. Repp, B.H. Detecting deviations from metronomic timing in music: effects of perceptual structure on the mental timekeeper. Percept. Psychophys. 61, 529–548 (1999).

    Article  CAS  Google Scholar 

  13. Repp, B.H. Phase correction following a perturbation in sensorimotor synchronization depends on sensory information. J. Mot. Behav. 34, 291–298 (2002).

    Article  Google Scholar 

  14. Repp, B.H. Perception of timing is more context sensitive than sensorimotor synchronization. Percept. Psychophys. 64, 703–716 (2002).

    Article  Google Scholar 

  15. Billon, M. & Semjen, A. The timing effects of accent production in synchronization and continuation tasks performed by musicians and nonmusicians. Psychol. Res. 58, 206–217 (1995).

    Article  CAS  Google Scholar 

  16. Billon, M., Semjen, A. & Stelmach, G.E. The timing effects of accent production in periodic finger-tapping sequences. J. Mot. Behav. 28, 198–210 (1996).

    Article  Google Scholar 

  17. Clegg, B.A., DiGirolamo, G.J. & Keele, S.W. Sequence learning. Trends Cogn. Sci. 2, 275–281 (1998).

    Article  CAS  Google Scholar 

  18. Shin, J.C. & Ivry, R.B. Concurrent learning of temporal and spatial sequences. J. Exp. Psychol. Learn. Mem. Cogn. 28, 445–457 (2002).

    Article  Google Scholar 

  19. Jones, M.R. Dynamic pattern structure in music - recent theory and research. Percept. Psychophys. 41, 621–634 (1987).

    Article  CAS  Google Scholar 

  20. Jones, M.R., Boltz, M. & Kidd, G. Controlled attending as a function of melodic and temporal context. Percept. Psychophys. 32, 211–218 (1982).

    Article  CAS  Google Scholar 

  21. Boltz, M.G. The generation of temporal and melodic expectancies during musical listening. Percept. Psychophys. 53, 585–600 (1993).

    Article  CAS  Google Scholar 

  22. Schmuckler, M.A. & Boltz, M.G. Harmonic and rhythmic influences on musical expectancy. Percept. Psychophys. 56, 313–325 (1994).

    Article  CAS  Google Scholar 

  23. Schellenberg, E.G., Krysciak, A.M. & Campbell, R.J. Perceiving emotion in melody: interactive effects of pitch and rhythm. Music Percept. 18, 155–171 (2000).

    Article  Google Scholar 

  24. Yee, W., Holleran, S. & Jones, M.R. Sensitivity to event timing in regular and irregular sequences: influences of musical skill. Percept. Psychophys. 56, 461–471 (1994).

    Article  CAS  Google Scholar 

  25. Barnes, R. & Jones, M.R. Expectancy, attention and time. Cognit. Psychol. 41, 254–311 (2000).

    Article  CAS  Google Scholar 

  26. Jones, M.R., Moynihan, H., MacKenzie, N. & Puente, J. Temporal aspects of stimulus-driven attending in dynamic arrays. Psychol. Sci. 13, 313–319 (2002).

    Article  Google Scholar 

  27. Jones, M.R. & Boltz, M. Dynamic attending and responses to time. Psychol. Rev. 96, 459–491 (1989).

    Article  CAS  Google Scholar 

  28. Large, E.W. & Jones, M.R. The dynamics of attending: how people track time-varying events. Psychol. Rev. 106, 119–159 (1999).

    Article  Google Scholar 

  29. Jones, M.R. Time, our lost dimension - toward a new theory of perception, attention and memory. Psychol. Rev. 83, 323–355 (1976).

    Article  CAS  Google Scholar 

  30. Drake, C., Jones, M.R. & Baruch, C. The development of rhythmic attending in auditory sequences: attunement, referent period, focal attending. Cognition 77, 251–288 (2000).

    Article  CAS  Google Scholar 

  31. Jones, M.R. & Pfordresher, P.Q. Tracking musical patterns using joint accent structure. Can. J. Exp. Psychol. 51, 271–291 (1997).

    Article  Google Scholar 

  32. Bapi, R.S., Doya, K. & Harner, A.M. Evidence for effector independent and dependent representations and their differential time course of acquisition during motor sequence learning. Exp. Brain Res. 132, 149–162 (2000).

    Article  CAS  Google Scholar 

  33. Hazeltine, E. The representational nature of sequence learning: evidence for goal-based codes. in Common Mechanisms in Perception and Action. Attention and Performance XIX (eds. Prinz, W. & Hommel, B.) (Oxford Univ. Press, Oxford, 2002).

    Google Scholar 

  34. Smith, G.J. Teaching a long sequence of behavior using whole task training, forward chaining, and backward chaining. Percept. Mot. Skills 89, 951–965 (1999).

    Article  CAS  Google Scholar 

  35. Ghahramani, Z. & Wolpert, D.M. Modular decomposition in visuomotor learning. Nature 386, 392–395 (1997).

    Article  CAS  Google Scholar 

  36. Sloboda, J.A. Visual perception of musical notation: registering pitch symbols in memory. Q. J. Exp. Psychol. 28, 1–16 (1976).

    Article  CAS  Google Scholar 

  37. Keele, S.W. et al. On the modularity of sequence representation. J. Mot. Behav. 27, 17–30 (1995).

    Article  Google Scholar 

  38. Koch, I. & Hoffmann, J. Patterns, chunks, and hierarchies in serial reaction-time tasks. Psychol. Res. 63, 22–35 (2000).

    Article  CAS  Google Scholar 

  39. Povel, D.J. & Collard, R. Structural factors in patterned finger tapping. Acta Psychologica 52, 107–123 (1982).

    Article  CAS  Google Scholar 

  40. Stadler, M.A. Implicit serial learning: questions inspired by Hebb (1961). Mem. Cognit. 21, 819–827 (1993).

    Article  CAS  Google Scholar 

  41. Drake, C. Psychological processes involved in the temporal organization of complex auditory sequences: Universal and acquired processes. Music Percept. 16, 11–26 (1998).

    Article  Google Scholar 

  42. Münte, T.F., Altenmüller, E. & Jäncke, L. The musician's brain as a model of neuroplasticity. Nat. Rev. Neurosci. 3, 473–478 (2002).

    Article  Google Scholar 

  43. Macar, F. et al. Activation of the supplementary motor area and of attentional networks during temporal processing. Exp. Brain Res. 142, 475–485 (2002).

    Article  CAS  Google Scholar 

  44. Schubotz, R.I., Friederici, A.D. & von Cramon, D.Y. Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. Neuroimage 11, 1–12 (2000).

    Article  CAS  Google Scholar 

  45. Penhune, V.B., Zatorre, R.J. & Evans, A.C. Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. J. Cogn. Neurosci. 10, 752–765 (1998).

    Article  CAS  Google Scholar 

  46. Sakai, K., Ramnani, N. & Passingham, R.E. Learning of sequences of finger movements and timing: frontal lobe and action-oriented representation. J. Neurophysiol. 88, 2035–2046 (2002).

    Article  Google Scholar 

  47. Sakai, K. et al. What and when: parallel and convergent processing in motor control. J. Neurosci. 20, 2691–2700 (2000).

    Article  CAS  Google Scholar 

  48. Schubotz, R.I. & von Cramon, D.Y. Interval and ordinal properties of sequences are associated with distinct premotor areas. Cereb. Cortex 11, 210–222 (2001).

    Article  CAS  Google Scholar 

  49. Schubotz, R.I. & von Cramon, D.Y. Predicting perceptual events activates corresponding motor schemes in lateral premotor cortex: an fMRI study. Neuroimage 15, 787–796 (2002).

    Article  Google Scholar 

  50. Sergent, J., Zuck, E., Terriah, S. & Macdonald, B. Distributed neural network underlying musical sight-reading and keyboard performance. Science 257, 106–109 (1992).

    Article  CAS  Google Scholar 

  51. Schön, D., Anton, J.L., Roth, M. & Besson, M. An fMRI study of music sight-reading. Neuroreport 13, 2285–2289 (2002).

    Article  Google Scholar 

  52. Satoh, M., Takeda, K., Nagata, K., Hatazawa, J. & Kuzuhara, S. Activated brain regions in musicians during an ensemble: a PET study. Brain Res. Cogn. Brain Res. 12, 101–108 (2001).

    Article  CAS  Google Scholar 

  53. Janata, P., Tillmann, B. & Bharucha, J.J. Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn. Aff. Behav. Neurosci. 2, 121–140 (2002).

    Article  Google Scholar 

  54. Tillmann, B., Janata, P. & Bharucha, J.J. Activation of the inferior frontal cortex in musical priming. Cogn. Brain Res. 16, 145–161 (2003).

    Article  Google Scholar 

  55. Janata, P. et al. The cortical topography of tonal structures underlying Western music. Science 298, 2167–2170 (2002).

    Article  CAS  Google Scholar 

  56. Zatorre, R.J., Evans, A.C. & Meyer, E. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 14, 1908–1919 (1994).

    Article  CAS  Google Scholar 

  57. Zatorre, R.J., Halpern, A.R., Perry, D.W., Meyer, E. & Evans, A.C. Hearing in the mind's ear: a PET investigation of musical imagery and perception. J. Cogn. Neurosci. 8, 29–46 (1996).

    Article  CAS  Google Scholar 

  58. Koelsch, S. et al. Bach speaks: a cortical “language-network” serves the processing of music. Neuroimage 17, 956–966 (2002).

    Article  Google Scholar 

  59. Halpern, A.R. & Zatorre, R.J. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cereb. Cortex 9, 697–704 (1999).

    Article  CAS  Google Scholar 

  60. Langheim, F.J.P., Callicott, J.H., Mattay, V.S., Duyn, J.H. & Weinberger, D.R. Cortical systems associated with covert music rehearsal. Neuroimage 16, 901–908 (2002).

    Article  Google Scholar 

  61. Nobre, A.C. The attentive homunculus: now you see it, now you don't. Neurosci. Biobehav. Rev. 25, 477–496 (2001).

    Article  CAS  Google Scholar 

  62. Coull, J.T., Frith, C.D., Buchel, C. & Nobre, A.C. Orienting attention in time: behavioral and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia 38, 808–819 (2000).

    Article  CAS  Google Scholar 

  63. Coull, J.T. & Nobre, A.C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci. 18, 7426–7435 (1998).

    Article  CAS  Google Scholar 

  64. Meck, W.H. & Benson, A.M. Dissecting the brain's internal clock: how frontal-striatal circuitry keeps time and shifts attention. Brain Cogn. 48, 195–211 (2002).

    Article  Google Scholar 

  65. Kermadi, I., Jurquet, Y., Arzi, M. & Joseph, J.P. Neural activity in the caudate nucleus of monkeys during spatial sequencing. Exp. Brain Res. 94, 352–356 (1993).

    Article  CAS  Google Scholar 

  66. Kermadi, I. & Joseph, J.P. Activity in the caudate nucleus of monkey during spatial sequencing. J. Neurophysiol. 74, 911–933 (1995).

    Article  CAS  Google Scholar 

  67. Graybiel, A.M. Building action repertoires: memory and learning functions of the basal ganglia. Curr. Opin. Neurobiol. 5, 733–741 (1995).

    Article  CAS  Google Scholar 

  68. Graybiel, A.M. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136 (1998).

    Article  CAS  Google Scholar 

  69. Jog, M.S., Kubota, Y., Connolly, C.I., Hillegaart, V. & Graybiel, A.M. Building neural representations of habits. Science 286, 1745–1749 (1999).

    Article  CAS  Google Scholar 

  70. Jones, M.R. Attending to auditory events: the role of temporal organization. in Thinking in Sound: The Cognitive Psychology of Human Audition (eds. McAdams, S. & Bigand, E.) 69–112 (Oxford Univ. Press, Oxford, 1993).

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank R. Ivry for comments on an earlier version of this manuscript. Supported by US National Institutes of Health grants P50 NS17778-18, R03 DC05146 and NS33504-10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Janata.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janata, P., Grafton, S. Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat Neurosci 6, 682–687 (2003). https://doi.org/10.1038/nn1081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1081

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing