Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage

Article metrics


The role of the hippocampus and adjacent medial temporal lobe structures in memory systems has long been debated. Here we show in humans that these neural structures are important for encoding implicit contextual information from the environment. We used a contextual cuing task in which repeated visual context facilitates visual search for embedded target objects. An important feature of our task is that memory traces for contextual information were not accessible to conscious awareness, and hence could be classified as implicit. Amnesic patients with medial temporal system damage showed normal implicit perceptual/skill learning but were impaired on implicit contextual learning. Our results demonstrate that the human medial temporal memory system is important for learning contextual information, which requires the binding of multiple cues.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Two sample displays from our contextual cuing visual search protocol.
Figure 2: Mean correct response time to localize and discriminate targets in old versus new configurations as a function of epoch (groups of five blocks), plotted separately for the control group (n = 10) and the amnesic group (n = 4).
Figure 3: Mean correct response time for a second group of controls (n = 5) on a more difficult version of the search task ( Fig. 1b ).


  1. 1

    Squire, L. R. & Zola-Morgan, S. The medial temporal lobe memory system. Science 253, 1380– 1386 (1991).

  2. 2

    Cohen, N. J. & Squire, L. R. Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science 210, 207– 210 (1980).

  3. 3

    Schacter, D. L. Implicit memory: History and current status. J. Exp. Psychol. Learn. Mem. Cogn. 13, 501–518 (1987).

  4. 4

    Clark, R. E. & Squire, L. R. Classical conditioning and brain systems: The role of awareness. Science 280, 77–81 (1998).

  5. 5

    Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

  6. 6

    Warrington, E. K. & Weiskrantz, L. New method of testing long-term retention with special reference to amnesic patients. Nature 217, 972–974 (1968).

  7. 7

    Corkin, S. Acquisition of motor skill after bilateral medial temporal-lobe excision. Neuropsychologia 6, 255– 265 (1968).

  8. 8

    Knowlton, B. J., Ramus, S. J. & Squire, L. R. Intact artificial grammar learning in amnesia: dissociation of classification learning and explicit memory for specific instances. Psychol. Sci. 3, 172–179 (1992).

  9. 9

    Tulving, E. & Schacter, D. L. Priming and human memory systems. Science 247, 301–306 (1990).

  10. 10

    Squire, L. R., Knowlton, B. & Musen, G. The structure and organization of memory. Annu. Rev. Psychol. 44, 453–495 (1993).

  11. 11

    Hirsh, R. The hippocampus and contextual retrieval of information from memory: a theory. Behav. Biol. 12, 421–444 (1974).

  12. 12

    Kim, J. J. & Fanselow, M. S. Modality-specific retrograde amnesia of fear. Science 256, 675– 677 (1992).

  13. 13

    Sutherland, R. J. & Rudy, J. W. Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia. Psychobiology 17, 129– 144 (1989).

  14. 14

    O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, 1978).

  15. 15

    Cohen, N. J. & Eichenbaum, H. Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, Massachusetts, 1993).

  16. 16

    Johnson, M. K. & Chalfonte, B. L. in Memory Systems 1994 (eds. Schacter, D. L. & Tulving, E.) 311– 350 (MIT Press, Cambridge, Massachusetts, 1994).

  17. 17

    Squire, L.R. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195– 231 (1992).

  18. 18

    Graf, P. & Schacter, D. L. Implicit and explicit memory for new associations in normal and amnesic subjects. J. Exp. Psychol. Learn. Mem. Cogn. 11, 501–518 (1985).

  19. 19

    Shimamura, A. P. & Squire, L. R. Impaired priming of new associations in amnesia. J. Exp. Psychol. Learn. Mem. Cogn. 15, 721–728 (1989).

  20. 20

    Gabrieli, J. D. Cognitive neuroscience of human memory. Annu. Rev. Psychol. 49, 87–115 (1998).

  21. 21

    Gabrieli, J. D., Keane, M. M., Zarella, M. M. & Poldrack, R. A. Preservation of implicit memory for new associations in global amnesia. Psychol. Sci. 8, 326–329 (1997).

  22. 22

    Chun, M. M. & Jiang, Y. Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognit. Psychol. 36, 28–71 (1998).

  23. 23

    Wolfe, J. M., Cave, K. R. & Franzel, S. L. Guided search: An alternative to the feature integration model for visual search. J. Exp. Psychol. Hum. Percept. Perform. 15, 419–433 (1989).

  24. 24

    Treisman, A., Vieira, A. & Hayes, A. Automaticity and preattentive processing. Am. J. Psychol. 105, 341–362 (1992).

  25. 25

    Musen, G. & Squire, L. R. Implicit learning of color–word associations using a Stroop paradigm. J. Exp. Psychol. Learn. Mem. Cogn. 19, 789–798 (1993).

  26. 26

    Musen, G. & Squire, L. R. On the implicit learning of novel associations by amnesic patients and normal subjects. Neuropsychology 7, 119–135 (1993).

  27. 27

    Biederman, I. Perceiving real-world scenes. Science 177, 77–80 (1972).

  28. 28

    McClelland, J. L. & Rumelhart, D. E. An interactive activation model of context effects in letter perception: Part I. An account of basic findings. Psychol. Rev. 88, 375–407 (1981).

  29. 29

    Gaffan, D. Scene-specific memory for objects—A model of episodic memory impairment in monkeys with fornix transection. J. Cognit. Neurosci. 6, 305–320 (1994).

  30. 30

    Doré, F. Y., Thornton, J. A., White, N. M. & Murray, E. A. Selective hippocampal lesions yield nonspatial memory impairments in rhesus monkeys. Hippocampus 8, 323– 329 (1998).

  31. 31

    Schacter, D. L., Church, B. & Bolton, E. Implicit memory in amnesic patients: Impairment of voice-specific priming. Psychol. Sci. 6, 20– 25 (1995).

  32. 32

    Mayes, A. R. Memory and amnesia. Behav. Brain. Res. 66, 29–36 (1995).

  33. 33

    Nissen, M. J. & Bullemer, P. Attentional requirements of learning: Evidence from performance measures. Cognit. Psychol. 19, 1–32 (1987).

  34. 34

    Loftus, G. R. & Masson, M. E. Using confidence intervals in within-subject designs. Psychonom. Bull. Rev. 1, 476–490 (1994).

Download references


We thank Kevin O'Connor for assistance in running the experiments, Sarah Raskin and Meike Verfaellie for patient referrals and Larry Squire, Mark Packard, John Gabrieli, John Kihlstrom and Jeansok Kim for discussions. This study was supported by National Institute of Mental Health grant MH50812 to E.A.P. and in part by National Science Foundation grant BCS-9817349 to M.M.C.

Author information

Correspondence to Marvin M. Chun.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chun, M., Phelps, E. Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nat Neurosci 2, 844–847 (1999) doi:10.1038/12222

Download citation

Further reading