Dendritic asymmetry cannot account for directional responses of neurons in visual cortex


A simple model was proposed to account for the direction selectivity of neurons in the primary visual cortex, area V1. In this model, the temporal asymmetries in the summation of inhibition and excitation that produce directionality were generated by structural asymmetries in the tangential organization of the basal dendritic tree of cortical neurons. We reconstructed dendritic trees of neurons with known direction preferences and found no correlation between the small biases of a neuron's dendritic morphology and its direction preference. Detailed simulations indicated that even when the electrotonic asymmetries in the dendrites were extreme, as in cortical Meynert cells, the biophysical properties of single neurons could contribute only partially to the directionality of cortical neurons.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Computing the dendritic bias.
Figure 2: Directionality and dendritic asymmetry.
Figure 3: Analysis of the relationship between directionality and dendritic bias.
Figure 4: .


  1. 1

    Hassenstein, B. & Reichardt, W. E. in Proc. 1st Int. Congress Cybernetics Namar 797–801 (1956).

  2. 2

    Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit's retina. J. Physiol.(Lond.) 178, 477–504 (1965).

  3. 3

    Livingstone, M. S. Mechanisms of direction selectivity in macaque V1. Neuron 20, 509–526 (1998).

  4. 4

    Rall, W. in Neural Theory and Modeling (ed. Reiss, R.) 73–97 (Stanford Univ. Press, Stanford, California, 1964).

  5. 5

    Agmon-Snir, H. & Segev, I. Signal delay and propagation velocity in passive dendritic trees. J. Neurophysiol. 70, 2066–2085 (1993).

  6. 6

    Ramon y Cajal, S. Estudios sobre la corteza cerebral humana. Corteza visual. Revista Trimestral Icorgraphia 4, 1–63 (1899).

  7. 7

    Le Gros Clark, W. E. The cells of Meynert in the visual cortex of the monkey. J. Anat. 76, 369–377 (1942).

  8. 8

    Chan-Palay, V., Palay, S. L. & Billings-Gagliardi, S. M. Meynert cells in the primate visual cortex. J. Neurocytol. 3, 631–658 (1974).

  9. 9

    Winfield, D. A., Neal, J. W. & Powell, T. P. S. The basal dendrites of Meynert cells in the striate cortex of the monkey. Proc. R. Soc. Lond. B Biol. Sci. 217, 27–40 (1983).

  10. 10

    Winfield, D. A., Rivera-Dominguez, M. & Powell, T. P. S. The number and distribution of Meynert cells in area 17 of the macaque monkey. Proc. R. Soc. Lond. B Biol. Sci. 213, 27–40 (1981).

  11. 11

    Adams, J. C. Heavy metal intensification of DAB-based HRP reaction product. J. Histochem. Cytochem. 29, 775 (1981).

  12. 12

    Daniel, P. M. & Whitteridge, D. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (Lond.) 159, 203–221 (1961).

  13. 13

    Segev, I. & Rall, W. Excitable dendrites and spines: Earlier theoretical insights elucidates recent direct observations. Trends Neurosci. 21, 453–459 (1998).

  14. 14

    Cole, K. S. C. Membranes, Ions and Impulses (Univ. California Press, Berkeley, 1968).

  15. 15

    Jack, J. J. B., Noble, D. & Tsien, R. W. Electric Current Flow In Excitable Cells (Clarendon, Oxford, 1975).

  16. 16

    Martin, K. A. C. & Whitteridge, D. The relationship of receptive field properties to the dendritic shape of neurones in the cat striate cortex. J. Physiol (Lond.) 356, 291–302 (1984).

  17. 17

    Orban G. A., Kennedy, H. & Maes, H. Response to movement of neurons in areas 17 and 18 in the cat: direction selectivity. J. Neurophysiol. 45, 1043–1073 (1981).

  18. 18

    Saul, A. B. & Humphrey, A. L. Temporal-frequency tuning of direction selectivity in cat visual cortex. Vis. Neurosci. 8, 365–372 (1992).

  19. 19

    Galarreta, M. & Hestrin, S. Properties of GABAA receptors underlying inhibitory synaptic currents in neocortical pyramidal neurons. J. Neurosci. 17, 7220–7227 (1997).

  20. 20

    Douglas, R. J. & Martin, K. A. C. A functional microcircuit for cat visual cortex. J. Physiol. (Lond.) 440, 735–769 (1991).

  21. 21

    Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. C. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995).

  22. 22

    Suarez, H. H., Koch, C. & Douglas, R. J. Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit. J. Neurosci. 15, 6700–6719 (1995).

  23. 23

    Maex, R. & Orban, G. A. Model circuit of spiking neurons generating directional selectivity in simple cells. J. Neurophysiol. 75, 1515–1545 (1996).

  24. 24

    Martin, K. A. C. & Whitteridge, D. Form, function and intracortical projections of spiny neurons in the striate visual cortex of the cat. J. Physiol. (Lond.) 353, 463–504 (1984).

  25. 25

    Douglas R. J., Martin, K. A. C. & Whitteridge, D. An intracellular analysis of the visual responses of neurones in cat visual cortex. J. Physiol. (Lond.) 440, 659–696 (1991).

  26. 26

    Hines, M. L. & Carnavale, N. T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

Download references


This work was supported by an SNF SPP grant to K.A.C.M. and R.J. Douglas and grants to I.S. from the Israeli Academy of Science and the Office of Naval Research. We thank R.J.D. for contributions to the experiments and cell reconstructions.

Author information

Correspondence to K. A. C. Martin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anderson, J., Binzegger, T., Kahana, O. et al. Dendritic asymmetry cannot account for directional responses of neurons in visual cortex. Nat Neurosci 2, 820–824 (1999).

Download citation

Further reading