Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Analysis of temporal structure in sound by the human brain


For over a century, models of pitch perception have been based on the frequency composition of the sound. Pitch phenomena can also be explained, however, in terms of the time structure, or temporal regularity, of sounds. To locate the mechanism for the detection of temporal regularity in humans, we used functional imaging and a 'delay-and-add' noise, which activates all frequency regions uniformly, like noise, but which nevertheless produces strong pitch perceptions and tuneful melodies. This stimulus has temporal regularity that can be systematically altered. We found that the activity of primary auditory cortex increased with the regularity of the sound. Moreover, a melody composed of delay-and-add 'notes' produced a distinct pattern of activation in two areas of the temporal lobe distinct from primary auditory cortex. These results suggest a hierarchical analysis of time structure in the human brain.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spectral representations of complex sounds that produce a pitch perception of 62.5 Hz.
Figure 2: Time-interval representations (autocorrelograms) of complex sounds that produce a pitch perception of 62.5 Hz.
Figure 3: Main effect of temporal structure within the individual sounds (iteration).
Figure 4: Pitch sequences used as stimuli.
Figure 5: Iteration–melody interaction.


  1. von Helmholtz, H. L. F. On the Sensations of Tone (Longmans, London, 1885).

  2. Patterson, R. D., Allerhand, M. H. & Giguerre, C. Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust. Soc. Am. 98, 1890–1894 ( 1995).

    CAS  Article  Google Scholar 

  3. Patterson, R. D. The sound of a sinusoid: Spectral models. J. Acoust. Soc. Am. 96, 1409–1418 (1994).

    Article  Google Scholar 

  4. Cohen, M. A., Grossberg, S. & Wyse, L. A spectral network model of pitch perception. J. Acoust. Soc. Am. 98, 862–879 ( 1995).

    CAS  Article  Google Scholar 

  5. Rose, J. E., Brugge, J. F., Anderson, D. J. & Hind, J. E. Phase-locked response to low-frequency tones in single auditory nerve fibres of the squirrel monkey. J. Neurophysiol. 30, 769– 793 (1967).

    CAS  Article  Google Scholar 

  6. Patterson, R. D., Handel, S., Yost, W. A. & Datta, A. J. The relative strength of the tone and the noise components in iterated rippled noise. J. Acoust. Soc. Am. 100, 3286–3294 (1996).

    Article  Google Scholar 

  7. Yost, W. A., Patterson, R. & Sheft, S. A time domain description for the pitch strength of iterated rippled noise. J. Acoust. Soc. Am. 99, 1066– 1078 (1996).

    CAS  Article  Google Scholar 

  8. Rouilly, E., deRibaupierre, Y. & deRibaupierre, F. Phase-locked responses to low frequency tones in the medial geniculate body. Hear. Res. 213– 226 (1979).

  9. Langner, G. & Schreiner, C. E. Periodicity coding in the inferior colliculus of the cat. I. neuronal mechanisms. J. Neurophysiol. 60, 1799–1822 ( 1988).

    CAS  Article  Google Scholar 

  10. Pantev, C., Hoke, M., Lutkenhoner, B. & Lehnertz, K. Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 242, 486–488 ( 1989).

    Article  Google Scholar 

  11. Penhune, V. B., Zatorre, R. J., MacDonald, J. D. & Evans, A. C. Interhemispheric anatomical differences in human primary auditory cortex: probabalistic mapping and volume measurement from magnetic resonance scans. Cereb. Cortex 6, 661–672 (1996).

    CAS  Article  Google Scholar 

  12. Friston, K. J. Testing for anatomically specified regional effects. Hum. Brain. Mapp. 5, 133–136 (1997).

    CAS  Article  Google Scholar 

  13. Merzenich, M. M. & Brugge, J. F. Representation of the cochlear partition on the superior temporal plane of the macaque monkey. J. Neurophysiol. 24, 193–202 (1973).

    Google Scholar 

  14. Rauschecker, J. F., Tian, B., Pons, T. & Mishkin, M. Serial and parallel processing in rhesus monkey auditory cortex. J. Comp. Neurol. 382, 89–103 (1997).

    CAS  Article  Google Scholar 

  15. Pandya, D. N. Anatomy of the auditory cortex. Rev. Neurologique 151, 486–494 (1995).

    CAS  Google Scholar 

  16. Lauter, J. L., Herscovitch, P., Formby, C. & Raichle, M. E. Tonotopic organisation in the human auditory cortex revealed by positron emission tomography. Hear. Res. 20, 199–205 ( 1985).

    CAS  Article  Google Scholar 

  17. Talavage, T. M., Ledden, P. J., Sereno, M. I., Rosen, B. R. & Dale, A. M. Multiple phase-encoded tonotopic maps in human auditory cortex. Neuroimage 5, S8 (1997).

  18. Wessinger, C. M., Buonocore, M. H., Kussmaul, C. L. & Mangun, G. R. Tonotopy in human auditory cortex examined with functional magnetic resonance imaging. Hum. Brain Mapp. 5, 18– 25 (1997).

    CAS  Article  Google Scholar 

  19. Phillips, D. P. & Farmer, M. E. Acquired word deafness and the temporal grain of sound representation in the primary auditory cortex. Behav. Brain Res. 40, 85–94 (1990).

    CAS  Article  Google Scholar 

  20. Langner, G., Sams, M., Heil, P. & Schulze, H. Frequency and periodicity are represented in orthogonal maps in the human auditory cortex; evidence from magnetoencephalography. J. Comp. Physiol. 181, 665–676 (1997).

    CAS  Article  Google Scholar 

  21. Peretz, I. et al. Functional dissociations following bilateral lesions of auditory cortex. Brain 117, 1283–1301 ( 1994).

    Article  Google Scholar 

  22. Zatorre, R. J. & Halpern, A. R. Effect of unilateral temporal lobe excision on perception and imagery of songs. Neuropsychologia 31, 221–232 ( 1993).

    CAS  Article  Google Scholar 

  23. Griffiths, T. D. et al. Spatial and temporal auditory processing deficits following right hemisphere infarction. A psychophysical study. Brain 120, 785–794 (1997).

    Article  Google Scholar 

  24. Zatorre, R. J., Evans, A. C., Meyer, E. & Gjedde, A. Lateralization of phonetic and pitch discrimination in speech processing. Science 256, 846–849 ( 1992).

    CAS  Article  Google Scholar 

  25. Zatorre, R. J., Evans, A. C. & Meyer, E. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 14, 1908– 1919 (1994).

    CAS  Article  Google Scholar 

  26. Platel, H. et al. The structural components of musical perception. A functional anatomical study. Brain 120, 229–243 (1997).

    Article  Google Scholar 

  27. Friston, K.J. et al. Spatial registration and normalisation of images. Hum. Brain Map. 2, 165–169 ( 1995).

    Article  Google Scholar 

  28. Talairach, P. & Tournoux, J. A Stereotactic Coplanar Atlas of the Human Brain (Thieme, Stuttgart, 1988).

    Google Scholar 

  29. Evans, A. C., Kamber, M., Collins, D. L., & Macdonald, D. in Magnetic Resonance Scanning and Epilepsy (eds Shorvon, S., Fish, D. Andermann, F., Bydder, G. M. & Stefan, H.) 263–274 (Plenum, 1994).

    Book  Google Scholar 

  30. Friston, K.J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189– 210 (1995).

    Article  Google Scholar 

Download references


T.D.G., C.B. and R.S.J.F. are supported by the Wellcome Trust. R.D.P. is supported by the MRC (UK).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Timothy D. Griffiths.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Griffiths, T., Büchel, C., Frackowiak, R. et al. Analysis of temporal structure in sound by the human brain. Nat Neurosci 1, 422–427 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing