Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Motion distorts visual space: shifting the perceived position of remote stationary objects

Abstract

To perceive the relative positions of objects in the visual field, the visual system must assign locations to each stimulus. This assignment is determined by the object's retinal position, the direction of gaze, eye movements, and the motion of the object itself. Here we show that perceived location is also influenced by motion signals that originate in distant regions of the visual field. When a pair of stationary lines are flashed, straddling but not overlapping a rotating radial grating, the lines appear displaced in a direction consistent with that of the grating's motion, even when the lines are a substantial distance from the grating. The results indicate that motion's influence on position is not restricted to the moving object itself, and that even the positions of stationary objects are coded by mechanisms that receive input from motion-sensitive neurons.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A schematic view of the stimulus configuration and perception.
Figure 2: Experiment 1 results for subjects DW and EV.
Figure 3: Thresholds from experiment 1 for subjects DW and EV.
Figure 4: Experiment 2.
Figure 5: Experiment 3 results for subjects DW and EV (squares).
Figure 6: Experiment 4 results.
Figure 7: Experiment 6 results.
Figure 8: Experiment 7 results.

References

  1. Matin, L. in Handbook of Sensory Physiology VII/4 (eds. Jameson, D. & Hurvich, L.) 331–380 (Springer, Berlin, 1972).

    Google Scholar 

  2. Ross, J., Morrone, C. & Burr, D. C. Compression of visual space before saccades. Nature 386, 598–601 (1997).

    Article  CAS  Google Scholar 

  3. Cai, R. H., Pouget, A., Schlag-Rey, M. & Schlag, J. Perceived geometrical relationships affected by eye-movement signals. Nature 386, 601–604 (1997).

    Article  CAS  Google Scholar 

  4. Deubel, H., Schneider, W. X. & Bridgeman, B. Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Res. 36, 985 –996 (1996).

    Article  CAS  Google Scholar 

  5. Frohlich, F. W. Die Empfindungszeit (Verlag von Gustav Fischer, Jena, 1929).

    Google Scholar 

  6. Matin, L., Boff, K. & Pola, J. Vernier offset produced by rotary target motion. Percept. Psychophys. 20, 138–142 (1976).

    Article  Google Scholar 

  7. Nijhawan, R. Motion extrapolation in catching. Nature 370, 256–257 (1994).

    Article  CAS  Google Scholar 

  8. Baldo, M. V. & Klein, S. A. Extrapolation or attention shift? Nature 378, 565–566 (1995).

    Article  CAS  Google Scholar 

  9. Khurana, B. & Nijhawan, R. Extrapolation or attention shift? reply. Nature 378, 566 (1995).

    Article  CAS  Google Scholar 

  10. Ramachandran, V. S. & Anstis, S. M. Illusory displacement of equiluminous kinetic edges. Perception 19, 611–616 (1990).

    Article  CAS  Google Scholar 

  11. DeValois, R. L. & DeValois, K. K. Vernier acuity with stationary moving gabors. Vision Res. 31, 1619–1626 (1991).

    Article  CAS  Google Scholar 

  12. Snowden, R. J. Shifts in perceived position following adaptation to visual motion. Curr. Biol. 8, 1343–1345 (1998).

    Article  CAS  Google Scholar 

  13. Nishida, S. & Johnston, A. Influence of motion signals on the perceived position of spatial pattern. Nature 397 , 610–612 (1999).

    Article  CAS  Google Scholar 

  14. Schlag, J., Cai, R., Dorfman, A., Mohempour, A. & Schlag-Rey, M. Extrapolating movement without retinal motion. Nature 403, 38–39 (2000).

    Article  CAS  Google Scholar 

  15. Freyd, J. J. & Finke, R. A. Representational momentum. J. Exp. Psychol. 19, 369–401 (1987).

    Google Scholar 

  16. Purushothaman, G., Patel, S. S., Bedell, H. E. & Ogmen, H. Moving ahead through differential visual latency. Nature 396, 424 (1998).

    Article  CAS  Google Scholar 

  17. Whitney, D. & Murakami, I. Latency difference, not spatial extrapolation. Nat. Neurosci. 1, 656– 657 (1998).

    Article  CAS  Google Scholar 

  18. Whitney, D., Murakami, I. & Cavanagh, P. Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli . Vision Res. 40, 137–149 (2000).

    Article  CAS  Google Scholar 

  19. Eagleman, D. M. & Sejnowski, T. J. Motion integration and postdiction in visual awareness. Science 287, 2036–2038 (2000).

    Article  CAS  Google Scholar 

  20. Berry, M. J. II, Brivanlou, I. H., Jordan, T. A. & Meister, M. Anticipation of moving stimuli by the retina. Nature 398, 334–338 (1999).

    Article  CAS  Google Scholar 

  21. Levi, D. M. & Klein, S. A. The role of separation and eccentricity in encoding position. Vision Res. 30, 557 –585 (1990).

    Article  CAS  Google Scholar 

  22. Dichgans, J., Held, R., Young, L. R. & Brandt, T. Moving visual scenes influence the apparent direction of gravity. Science 178, 1217–1219 (1972).

    Article  CAS  Google Scholar 

  23. Kertesz, A. & Jones, R. The effect of angular velocity of stimulus on human torsional eye movements. Vision Res. 9, 995–998 (1969).

    Article  CAS  Google Scholar 

  24. Merker, B. H. & Held, R. Eye torsion and the apparent horizon under head tilt and visual field rotation. Vision Res. 21, 543–547 (1981).

    Article  CAS  Google Scholar 

  25. Hughes, P. C., Brecher, G. & Fishkin, S. Effects of rotating backgrounds upon the perception of verticality. Percept. Psychophys. 11, 135–138 (1972).

    Article  Google Scholar 

  26. Witkin, H. & Asch, S. Studies in space orientation. IV. Further experiments on perception of the up-right with displaced visual fields. J. Exp. Psychol. 38, 762–782 (1948).

    Article  CAS  Google Scholar 

  27. Rock, I. in The Legacy of Solomon Asch (ed. Rock, I.) 243– 268 (Lawrence Erlbaum, Hillsdale, New Jersey, 1990).

    Google Scholar 

  28. Ramachandran, V. S. Interaction between colour and motion in human vision. Nature 328, 645–647 (1987).

    Article  CAS  Google Scholar 

  29. Cropper, S. J. & Derrington, A. M. Motion of chromatic stimuli: first-order or second-order? Vision Res. 34, 49–58 (1994).

    Article  CAS  Google Scholar 

  30. Cavanagh, P. Attention-based motion perception. Science 257, 1563–1565 (1992).

    Article  CAS  Google Scholar 

  31. Kelly, D. H. Motion and vision. II. Stabilized spatio-temporal threshold surface. J. Opt. Soc. Am. 69, 1340–1349 (1979).

    Article  CAS  Google Scholar 

  32. Nakayama, K. Biological image motion processing: a review. Vision Res. 25, 625–660 (1985).

    Article  CAS  Google Scholar 

  33. Verstraten, F., Cavanagh, P. & Labianca, A. Limits of attentive tracking reveal temporal properties of atention. Vision Res. (in press).

  34. Duncker, K. in Source Book of Gestalt Psychology (ed. and trans. Ellis, W. D.) 161–172 (Routledge & Kegan Paul, London, 1938). [Reprinted from Psychologische Forschung 12, 180–259, 1929].

    Book  Google Scholar 

  35. Anstis, S. M. & Reinhardt-Rutland, A. H. Interactions between motion aftereffects and induced movement. Vision Res. 16, 1391–1394 (1976).

    Article  CAS  Google Scholar 

  36. Nakayama, K. & Silverman, G. Temporal and spatial characteristics of the upper displacement limit for motion in random dots. Vision Res. 24, 293–300 (1984).

    Article  CAS  Google Scholar 

  37. Snowden, R. J. & Braddick, O. J. Extension of displacement limits in multiple-exposure sequences of apparent motion. Vision Res. 29, 1777–1787 (1989).

    Article  CAS  Google Scholar 

  38. Nawrot, M. & Sekuler, R. Assimilation and contrast in motion perception: explorations in cooperativity. Vision Res. 30, 1439–1451 (1990).

    Article  CAS  Google Scholar 

  39. Reinhardt-Rutland, A. H. Induced movement in the visual modality: An overview. Psychol. Bull. 103, 57–71 (1988).

    Article  CAS  Google Scholar 

  40. Gogel, W. C. & Koslow, M. The adjacency principle and induced movement. Percept. Psychophys. 11, 309– 314 (1972).

    Article  Google Scholar 

  41. Felleman, D. J. & Kaas, J. H. Receptive-field properties of neurons in middle temporal area (MT) of owl monkeys. J. Neurophysiol. 52, 488–513 (1984).

    Article  CAS  Google Scholar 

  42. Mikami, A., Newsome, W. T. & Wurtz, R. H. Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and VI. J. Neurophysiol. 55 1328–1339 (1986).

    Article  CAS  Google Scholar 

  43. Tanaka, K. & Saito, H. Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 62, 626–641 (1989).

    Article  CAS  Google Scholar 

  44. Maunsell, J. H. & Van Essen, D. C. Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J. Neurophysiol. 49, 1148–1167 (1983).

    Article  CAS  Google Scholar 

  45. Maunsell, J. H. & Van Essen, D. C. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol. 49, 1127–1147 (1983).

    Article  CAS  Google Scholar 

  46. Tootell, R. B. et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375 , 139–141 (1995).

    Article  CAS  Google Scholar 

  47. Zeki, S. in Coding and Efficiency (ed Blakemore, C.) 321– 345 (Cambridge Univ Press, Cambridge, 1990).

    Google Scholar 

  48. Daniel, P. M. & Whitteridge, D. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (Lond.) 159, 203–221 (1961).

    Article  CAS  Google Scholar 

  49. Edelman, G. M. in The Mindful Brain (eds. Edelman, G. M. & Mountcastle, V. B.) 55–100 (MIT Press, Cambridge, Massachusetts, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Whitney.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Whitney, D., Cavanagh, P. Motion distorts visual space: shifting the perceived position of remote stationary objects. Nat Neurosci 3, 954–959 (2000). https://doi.org/10.1038/78878

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78878

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing