Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Different modes of expression of AMPA and NMDA receptors in hippocampal synapses

Abstract

Postembedding immunogold labeling was used to determine the relationship between AMPA and NMDA receptor density and size of Schaffer collateral–commissural (SCC) synapses of the adult rat. All SCC synapses expressed NMDA receptors. AMPA and NMDA receptors were colocalized in at least 75% of SCC synapses; the ratio of AMPA to NMDA receptors was a linear function of postsynaptic density (PSD) diameter, with AMPA receptor number dropping to zero at a PSD diameter of ~180 nm. These findings indicate that 'silent' SCC synapses are smaller than the majority of SCC synapses at which AMPA and NMDA receptors are colocalized. Thus synapse size may determine important properties of SCC synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Double immunogold labeling.
Figure 2: AMPA and NMDA receptor immunogold lableling.
Figure 3: Regression analysis of serially sectioned asymmetric synapses on spines in stratum radiatum.
Figure 4: Distribution of PSD profiles according to labeling intensity for AMPA receptors (bin width corresponds to one gold particle).
Figure 5: Proportion and sizes of AMPA-immunonegative synapses.
Figure 6: Mossy fiber synapses (mf) labeled with antibodies to AMPA receptors.

Similar content being viewed by others

References

  1. Seeburg, P. H. The TIPS/TINS lecture: the molecular biology of mammalian glutamate receptor channels. Trends Pharmacol. Sci. 14, 297 –303 (1993).

    Article  CAS  Google Scholar 

  2. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  Google Scholar 

  3. Ottersen, O. P. & Landsend, A. S. Organization of glutamate receptors at the synapse. Eur. J. Neurosci. 9, 2219–2224 (1997).

    Article  CAS  Google Scholar 

  4. Baude, A., Nusser, Z., Molnár, E., McIlhinney, R. A. & Somogyi, P. High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience 69, 1031 –1055 (1995).

    Article  CAS  Google Scholar 

  5. Matsubara, A., Laake, J. H., Davanger, S., Usami, S. & Ottersen, O. P. Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J. Neurosci. 16, 4457–4467 (1996).

    Article  CAS  Google Scholar 

  6. Popratiloff, A., Weinberg, R. J. & Rustioni, A. AMPA receptor subunits underlying terminals of fine-caliber primary afferent fibers. J. Neurosci. 16, 3363–3372 (1996).

    Article  CAS  Google Scholar 

  7. Kharazia, V. N., Phend, K. D., Rustioni, A. & Weinberg, R. J. EM colocalization of AMPA and NMDA receptor subunits at synapses in rat cerebral cortex. Neurosci. Lett. 210, 37– 40 (1996).

    Article  CAS  Google Scholar 

  8. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21 , 545–559 (1998).

    Article  CAS  Google Scholar 

  9. Wang, Y. X., Wenthold, R. J., Ottersen, O. P. & Petralia, R. S. Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits. J. Neurosci. 18, 1148–1160 (1998).

    Article  CAS  Google Scholar 

  10. Kullmann, D. M. Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron 12, 1111–1120 (1994).

    Article  CAS  Google Scholar 

  11. Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427– 434 (1995).

    Article  CAS  Google Scholar 

  12. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 ( 1995).

    Article  CAS  Google Scholar 

  13. Madison, D. V., Malenka, R. C. & Nicoll, R. A. Mechanisms underlying long-term potentiation of synaptic transmission. Annu. Rev. Neurosci. 14, 379 –397 (1991).

    Article  CAS  Google Scholar 

  14. Harris, K. M., Jensen, F. E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

    Article  CAS  Google Scholar 

  15. Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    Article  CAS  Google Scholar 

  16. Collingridge, G. L., Kehl, S. J. & McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (Lond.) 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  17. Benke, T. A., Luthi, A., Isaac, J. T. & Collingridge, G. L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 ( 1998).

    Article  CAS  Google Scholar 

  18. He, Y., Janssen, W. G. & Morrison, J. H. Synaptic coexistence of AMPA and NMDA receptors in the rat hippocampus: a postembedding immunogold study. J. Neurosci. Res. 54, 444–449 ( 1998).

    Article  CAS  Google Scholar 

  19. Bramham, C. R., Torp, R., Zhang, N., Storm-Mathisen, J. & Ottersen, O. P. Distribution of glutamate-like immunoreactivity in excitatory hippocampal pathways: a semiquantitative electron microscopic study in rats. Neuroscience 39, 405– 417 (1990).

    Article  CAS  Google Scholar 

  20. Bekkers, J. M. & Stevens, C. F. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341, 230– 233 (1989).

    Article  CAS  Google Scholar 

  21. Kauer, J. A., Malenka, R. C. & Nicoll, R. A. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1, 911–917 (1988).

    Article  CAS  Google Scholar 

  22. Muller, D., Joly, M. & Lynch, G. Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242, 1694– 1697 (1988).

    Article  CAS  Google Scholar 

  23. Maren, S., Tocco, G., Standley, S., Baudry, M. & Thompson, R. F. Postsynaptic factors in the expression of long-term potentiation (LTP): increased glutamate receptor binding following LTP induction in vivo. Proc. Natl. Acad. Sci. USA 90, 9654–9658 (1993).

    Article  CAS  Google Scholar 

  24. Shirke, A. M. & Malinow, R. Mechanisms of potentiation by calcium-calmodulin kinase II of postsynaptic sensitivity in rat hippocampal CA1 neurons. J. Neurophysiol. 78, 2682–2692 (1997).

    Article  CAS  Google Scholar 

  25. Nayak, A., Zastrow, D. J., Lickteig, R., Zahniser, N. R. & Browning, M. D. Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature 394, 680–683 ( 1998).

    Article  CAS  Google Scholar 

  26. Geinisman, Y. et al. Structural synaptic correlate of long-term potentiation: formation of axospinous synapses with multiple, completely partitioned transmission zones. Hippocampus 3, 435– 445 (1993).

    Article  CAS  Google Scholar 

  27. Andersen, P. & Soleng, A. F. Long-term potentiation and spatial training are both associated with the generation of new excitatory synapses. Brain Res. Brain Res. Rev. 26, 353– 359 (1998).

    Article  CAS  Google Scholar 

  28. Desmond, N. L. & Levy, W. B. Synaptic interface surface area increases with long-term potentiation in the hippocampal dentate gyrus. Brain Res. 453, 308– 314 (1988).

    Article  CAS  Google Scholar 

  29. Kellenberger, E., Durrenberger, M., Villiger, W., Carlemalm, E. & Wurtz, M. The efficiency of immunolabel on Lowicryl sections compared to theoretical predictions. J. Histochem. Cytochem. 35, 959–969 ( 1987).

    Article  CAS  Google Scholar 

  30. Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (Lond.) 472, 615–663 ( 1993).

    Article  CAS  Google Scholar 

  31. Petralia, R. S. et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat. Neurosci. 2, 31–36 ( 1999).

    Article  CAS  Google Scholar 

  32. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71 –75 (1996).

    Article  CAS  Google Scholar 

  33. Gomperts, S. N., Rao, A., Craig, A. M., Malenka, R. C. & Nicoll, R. A. Postsynaptically silent synapses in single neuron cultures. Neuron 21, 1443– 1451 (1998).

    Article  CAS  Google Scholar 

  34. Kullmann, D. M. & Asztely, F. Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci. 21, 8–14 (1998).

    Article  CAS  Google Scholar 

  35. Fritschy, J.-M., Weinmann, O., Wenzel, A. & Benke, D. Synapse-specific localization of NMDA and GABAA receptor subunits revealed by antigen-retrieval immunohistochemistry. J. Comp. Neurol. 390, 194–210 (1998).

    Article  CAS  Google Scholar 

  36. Weisskopf, M. G. & Nicoll, R. A. Presynaptic changes during mossy fibre LTP revealed by NMDA receptor-mediated synaptic responses. Nature 376, 256– 259 (1995).

    Article  CAS  Google Scholar 

  37. Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).

    Article  CAS  Google Scholar 

  38. Castillo, P. E., Malenka, R. C. & Nicoll, R. A. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388, 182–186 (1997).

    Article  CAS  Google Scholar 

  39. Vignes, M. & Collingridge, G. L. The synaptic activation of kainate receptors. Nature 388, 179– 182 (1997).

    Article  CAS  Google Scholar 

  40. Kharazia, V. N. & Weinberg, R. J. Immunogold localization of AMPA and NMDA receptors in somatic sensory cortex of albino rat. J. Comp. Neurol. (in press).

  41. Ben-Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O. & Gaiarsa, J.-L. GABAA, NMDA and AMPA receptors: a developmentally regulated 'ménage à trois'. Trends Neurosci. 20, 523–529 (1999).

    Article  Google Scholar 

  42. Nagelhus, E. A. et al. Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Müller cells and fibrous astrocytes. J. Neurosci. 18, 2506– 2519 (1998).

    Article  CAS  Google Scholar 

  43. Hjelle, O. P., Chaudhry, F. A. & Ottersen, O. P. Antisera to glutathione: characterization and immunocytochemical application to the rat cerebellum. Eur. J. Neurosci. 6, 793–804 (1994).

    Article  CAS  Google Scholar 

  44. Wenthold, R. J., Yokotani, N., Doi, K. & Wada, K. Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies. Evidence for a hetero-oligomeric structure in rat brain. J. Biol. Chem. 267, 501–507 ( 1992).

    CAS  PubMed  Google Scholar 

  45. Petralia, R. S., Yokotani, N. & Wenthold, R. J. Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody. J. Neurosci. 14, 667– 696 (1994).

    Article  CAS  Google Scholar 

  46. Petralia, R. S., Wang, Y. X. & Wenthold, R. J. The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. J. Neurosci. 14, 6102–6120 (1994).

    Article  CAS  Google Scholar 

  47. Ottersen, O. P., Zhang, N. & Walberg, F. Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 46, 519– 534 (1992).

    Article  CAS  Google Scholar 

  48. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, San Diego, 1986).

Download references

Acknowledgements

This work was supported by the Norwegian Research Council, Professor Letten F. Saugstad's Fund and EU Biomed grant PL 962118. A travel grant from Hjärnfonden, Erik & Edith Fernström's Fund and the Swedish Medical Research Council (to V.R.-L.) is gratefully acknowledged. Antibodies were provided by R. J. Wenthold. We thank R. J. Wenthold, R. Nicoll, Y. Ben-Ari, Johannes Helm and Ø. Hvalby for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole P. Ottersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takumi, Y., Ramírez-León, V., Laake, P. et al. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2, 618–624 (1999). https://doi.org/10.1038/10172

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10172

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing