Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ionic interactions in the Drosophila serotonin transporter identify it as a serotonin channel

Abstract

Serotonin transporters (SERTs) are targets for drugs such as Prozac that increase serotonin (5HT) levels by blocking 5HT reuptake. Although SERTs saturate in the micromolar range, synaptic 5HT may exceed 1 mM. To examine SERT's response to high 5HT concentrations, we expressed Drosophila SERT (dSERT) in Xenopus oocytes and found that transport continued to increase with concentration up to 0.3 mM 5HT. As 5HT is a monovalent cation, its entry through an ion channel in SERT might explain uptake at high concentrations. We therefore investigated dSERT using traditional ion channel methods, including mole-fraction experiments under voltage clamp. We propose that SERTs may function as 5HT-permeable channels, and that this mechanism may be important for clearance of the neurotransmitter at high concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Currents from dSERT-injected and uninjected oocytes in Na+ or Li+ Ringer's.
Figure 2: 5HT has opposing effects on current in Na+ or Li+ Ringer's.
Figure 3: Current in a mixture of Na+ and Li+ Ringer's is not additive.
Figure 4: 5HT restores additivity to a mixture of Na+ and Li+ Ringer's.
Figure 5: Uptake plateaus but concentration gradient collapses at 300 μM 5HT.
Figure 6: Rate of uptake increases but current decreases at 300 μM 5HT.

Similar content being viewed by others

References

  1. Guan, X. M. & McBride, W. J. Fluoxetine increases the extracellular levels of serotonin in the nucleus accumbens. Brain Res. Bull. 21, 43–46 (1998).

    Article  Google Scholar 

  2. Fuller, R. W., Hemrick-Luecke, S. K. & Snoddy, H. D. Effects of duloxetine, an antidepressant drug candidate, on concentrations of monoamines and their metabolites in rats and mice. J. Pharmacol. Exp. Ther. 269, 132– 136 (1994).

    CAS  PubMed  Google Scholar 

  3. Barker, E. L. & Blakely, R. D. in Psychopharmacology: The Fourth Generation of Progress (eds. Bloom, F. E. & Kupfer, D. J.) 321–333 (Raven, New York, 1995).

    Google Scholar 

  4. Eccles, J. C. & Jaeger, J. C. The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc. R. Soc. Biol. Sci. 148, 38–56 (1958).

    CAS  Google Scholar 

  5. Clements, J. D., Lester, R. A., Tong, G., Jahr, C. E. & Westbrook, G. L. The time course of glutamate in the synaptic cleft. Science 258, 1498–1501 (1992).

    Article  CAS  Google Scholar 

  6. Duncan, G. E. et al. Autoradiographic characterization of imipramine and citalopram binding in rat and human brain: species differences and relationships to serotonin innervation patterns. Brain Res. 591 181 –197 (1992).

    Article  CAS  Google Scholar 

  7. Bunin, M. A. & Wightman, R. M. Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J. Neurosci. 18, 4854– 4860 (1998).

    Article  CAS  Google Scholar 

  8. Mager, S. et al. Conducting states of a mammalian serotonin transporter. Neuron 12, 845–859 ( 1994).

    Article  CAS  Google Scholar 

  9. Corey, J. L., Quick, M. W., Davidson, N., Lester, H. A. & Guastella, J. A cocaine-sensitive Drosophila serotonin transporter: Cloning, expression, and electrophysiological characterization. Proc. Natl. Acad. Sci. USA 91, 1188–1192 (1994).

    Article  CAS  Google Scholar 

  10. Ramamoorthy, S. et al. Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc. Natl. Acad. Sci. USA 90, 2542–2546 (1993).

    Article  CAS  Google Scholar 

  11. Blakely, R. D. et al. Cloning and expression of a functional serotonin transporter from rat brain. Nature 354, 66– 69 (1991).

    Article  CAS  Google Scholar 

  12. Bruns, D., Engert, F. & Lux, H.-D. A fast activating presynaptic reuptake current during serotonergic transmission in identified neurons of Hirudo. Neuron 10, 559–572 ( 1993).

    Article  CAS  Google Scholar 

  13. Galli, A., Petersen, C. I., deBlaquiere, M., Blakely, R. D. & DeFelice, L. J. Drosophila serotonin transporters have voltage-dependent uptake coupled to a serotonin-gated ion channel. J. Neurosci. 17, 3401– 3411 (1997).

    Article  CAS  Google Scholar 

  14. Humphreys, C. J., Levin, J. & Rudnick, G. Antidepressant binding to the porcine and human platelet serotonin transporters. Mol. Pharmacol. 33, 657–663 (1988).

    CAS  PubMed  Google Scholar 

  15. Lin, F., Lester, H. A. & Mager, S. Single-channel currents produced by the serotonin transporter, and analysis of a mutation affecting ion permeation. Biophys. J . 71, 3126–3135 ( 1996).

    Article  CAS  Google Scholar 

  16. Sonders, M. & Amara, S. G. Channels in transporters. Curr. Opin. Neurobiol. 6, 294–302 (1996).

    Article  CAS  Google Scholar 

  17. DeFelice, L. J. & Blakely, R. D. Pore models for transporters? Biophys. J. 70, 579– 580 (1996).

    Article  CAS  Google Scholar 

  18. Sonders, M. S., Zhu, S.-J., Zahniser, N. R., Kavanaugh, M. P. & Amara, S. G. Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J. Neurosci. 17, 960–974 (1997).

    Article  CAS  Google Scholar 

  19. Cammack, J. N. & Schwartz, E. A. Channel behavior in a γ-aminobutyrate transporter. Proc. Natl. Acad. Sci. USA 93, 723–727 ( 1996).

    Article  CAS  Google Scholar 

  20. Galli, A., Blakely, R. D. & DeFelice, L. J. Norepinephrine transporters have channel modes of conduction. Proc. Natl. Acad. Sci. USA 93, 8671–8676 (1996).

    Article  CAS  Google Scholar 

  21. Hagiwara, S. & Takahashi, K. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J. Membr. Biol. 18, 61–80 ( 1974).

    Article  CAS  Google Scholar 

  22. Neher, E., Sandblom, J. & Eisenman, G. Ion selectivity, saturation, and block in gramicidin A channels. J. Membr. Biol. 40, 97– 116 (1978).

    Article  CAS  Google Scholar 

  23. Hess, P. & Tsien, R. W. Mechanism of ion permeation through calcium channels. Nature 309, 453– 456 (1984).

    Article  CAS  Google Scholar 

  24. Almers, W., McCleskey, E. W. & Palade, P. T. A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J. Physiol. (Lond.) 353, 565–583 ( 1984).

    Article  CAS  Google Scholar 

  25. Almers, W. & McCleskey, E. W. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J. Physiol. (Lond.) 353, 585– 608 (1984).

    Article  CAS  Google Scholar 

  26. Hille, B. Ionic Channels of Excitable Membranes 2nd edn. 362– 389 (Sinauer, Sunderland, Massachusetts, 1992).

  27. Aidley, D. J. & Stanfield, P. R. Ion channels 121 –160 (Cambridge Univ. Press, Cambridge, UK, 1996).

  28. Demchyshyn, L. L. et al. Cloning, expression, and localization of a chloride-facilitated, cocaine-sensitive serotonin transporter from Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 91, 5158– 5162 (1994).

    Article  CAS  Google Scholar 

  29. Trimmer, J. S. et al. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3, 33–49 (1989).

    Article  CAS  Google Scholar 

  30. Cao, Y., Mager, S. & Lester, H. A. H+ permeation and pH regulation at a mammalian serotonin transporter. J. Neurosci. 17, 2257–2266 (1997).

    Article  CAS  Google Scholar 

  31. Keyes, S. R. & Rudnick, G. Coupling of transmembrane proton gradients to platelet serotonin transport. J. Biol. Chem. 257, 1172–1176 (1982).

    CAS  PubMed  Google Scholar 

  32. Cool, D. R., Leibach, F. H. & Ganapathy, V. Modulation of serotonin uptake kinetics by ions and ion gradients in human placental brush-border membrane vesicles. Biochemistry 29 1818–1822 (1990).

    Article  CAS  Google Scholar 

  33. Nelson, P. J. & Rudnick, G. Coupling between platelet 5-hydroxytryptamine and potassium transport. J. Biol. Chem. 254, 10084–10089 (1979).

    CAS  PubMed  Google Scholar 

  34. Su, A., Mager, S., Mayo, S. L. & Lester, H. A. A multi-substrate single-file model for ion-coupled transporters. Biophys. J. 70, 762–777 (1996).

    Article  CAS  Google Scholar 

  35. Gu, H., Wall, S. C. & Rudnick, G. Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J. Biol. Chem. 269, 7124–7130 (1994).

    CAS  Google Scholar 

  36. Hodgkin, A. L. & Keynes, R. D. The potassium permeability of a giant nerve fibre. J. Physiol. (Lond.) 128, 61–88 (1955).

    Article  CAS  Google Scholar 

  37. Galli, A., Blakely, R. D. & DeFelice, L. J. Patch-clamp and amperometric recordings from norepinephrine transporters: channel activity and voltage-dependent uptake. ( 1999).

Download references

Acknowledgements

A NARSAD Distinguished Investigator Award to L.J.D. and NINDS Grant NS-34075 and NIDA Grant DA-07390 supported this work. We wish to thank Gary Rudnick, Randy Blakely and Christoph Fahlke for discussion, Jeff Balser for the μ1 clone, Hyeon-Gyu Shin for assistance with μ1 characterization and Dawn Borromeo for help in harvesting oocytes, preparing solutions and other technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis J. DeFelice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, C., DeFelice, L. Ionic interactions in the Drosophila serotonin transporter identify it as a serotonin channel. Nat Neurosci 2, 605–610 (1999). https://doi.org/10.1038/10158

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing