Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Form constraints in motion binding

Abstract

Visual analyses of form and motion proceed along parallel streams. Unified perception of moving forms requires interactions between these streams, although whether the interactions occur early or late in cortical processing remains unresolved. Using rotating outlined shapes sampled through apertures, we showed that binding local motions into global object motion depends strongly on spatial configuration. Identical local motion components are perceived coherently when they define closed configurations, but usually not when they define open configurations. Our experiments show this influence arises in early cortical levels and operates as a form-based veto of motion integration in the absence of closure.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Stimuli used in the experiments.
Figure 2: Motion binding with different shapes.
Figure 3: Motion binding with four-component stimuli.
Figure 4: Rotation discrimination as a function of segment luminance.
Figure 5: Attenuated form–motion interactions.
Figure 6: Contour extrapolation (amodal completion), and surface filling-in for the diamond, cross and chevron.

References

  1. Ungerleider, L. G. & Mishkin, M. in The Analysis of Visual Behavior (eds. Ingle, D. J., Mansfield, R. J. W. & Goodale M. S.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  2. Livingstone, M. S. & Hubel, D. H. Psychophysical evidence for separate channels for the perception of form, color, movement and depth. J. Neurosci. 11, 3416–3468 (1987).

    Article  Google Scholar 

  3. DeYoe, E. A. & Van Essen, D. C. Concurrent streams in monkey visual cortex. Trends Neurosci. 11, 219–226 (1988).

    CAS  Article  Google Scholar 

  4. Geesaman, B. J. & Andersen, R. A. The analysis of complex motion patterns by form/cue invariant MSTd neurons. J. Neurosci. 16, 4716–4732 (1996).

    CAS  Article  Google Scholar 

  5. Braddick, O. J., O'Brien, J. M. D., Wattam-Bell, J., Atkinson, A. & Turner, R. Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain. Curr. Biol. 10, 731–734 (2000).

    CAS  Article  Google Scholar 

  6. Anderson, B. L. & Sinha, P. Reciprocal interactions between occlusion and motion computations. Proc. Natl. Acad. Sci. USA 94, 3477–3480 (1997).

    CAS  Article  Google Scholar 

  7. Watanabe, T. Velocity decomposition and surface decomposition: reciprocal interactions between motion and form processing. Vision Res. 37, 2879–2889 (1997).

    CAS  Article  Google Scholar 

  8. Tse, P., Cavanagh, P. & Nakayama, K. in High-Level Motion Processing—Computational, Neurobiological and Psychophysical Perspectives (ed. Watanabe, T.) 245–266 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  9. Rao, S. C., Rainer, G. & Miller, E. K. Integration of what and where in the primate prefrontal cortex. Science 276, 821–824 (1997).

    CAS  Article  Google Scholar 

  10. Malpeli, J. G., Schiller, P. H. & Colby, C. L. Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. J. Neurophysiol. 46, 1102–1119 (1981).

    CAS  Article  Google Scholar 

  11. Nealy, T. A. & Maunsell, J. H. R. Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex. J. Neurosci. 14, 2069–2079 (1994).

    Article  Google Scholar 

  12. Sawatari, A. & Callaway, E. M. Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex. Nature 380, 442–446 (1996).

    CAS  Article  Google Scholar 

  13. Lorenceau, J. & Shiffrar, M. The influence of terminators on motion integration across space. Vision Res. 32, 263–273 (1992).

    CAS  Article  Google Scholar 

  14. Alais, D., van der Smagt, M. J., van den Berg, A. V. & van de Grind, W. A. Local and global factors affecting the coherent motion of gratings presented in multiple apertures. Vision Res. 38, 1581–1591 (1998).

    CAS  Article  Google Scholar 

  15. Shiffrar, M. & Lorenceau, J. Increased motion linking across edges with decreased luminance contrast, edge width and duration. Vision Res. 36, 2061–2068 (1996).

    CAS  Article  Google Scholar 

  16. Lorenceau, J. & Zago, L. Cooperative and competitive spatial interactions in motion integration. Vis. Neurosci. 16, 755–770 (1999).

    CAS  Article  Google Scholar 

  17. Morgan, M. J., Findlay J. M., & Watt, R. J. Aperture viewing: a review and a synthesis. Q. J. Exp. Psychol. 34A, 211–233 (1982).

    Article  Google Scholar 

  18. Adelson, E. H. & Movshon, J. A. Phenomenal coherence of moving visual patterns. Nature 300, 523–525 (1982).

    CAS  Article  Google Scholar 

  19. Wilson, H. R. & Kim, J. A model for motion coherence and transparency. Vis. Neurosci. 11, 1205–1220 (1994).

    CAS  Article  Google Scholar 

  20. Guilford, J. P. Psychometric Methods (New York, McGraw-Hill, 1954).

    Google Scholar 

  21. Merigan, W. H. & Maunsell, J. H. How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16, 369–402 (1993).

    CAS  Article  Google Scholar 

  22. Shapley, R. Visual sensitivity and parallel retinocortical channels. Annu. Rev. Psychol. 41, 635–658 (1990).

    CAS  Article  Google Scholar 

  23. Tootell, R. B. et al. Functional analysis of V3A and related areas in human visual cortex. J. Neurosci. 17, 7060–7078 (1997).

    CAS  Article  Google Scholar 

  24. Shimojo, S., Silverman, G. & Nakayama, K. Occlusion and the solution to the aperture problem for motion. Vision Res. 29, 619–626 (1989).

    CAS  Article  Google Scholar 

  25. Derrington, A. M. & Lennie, P. Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J. Physiol. (Lond.) 357, 219–240 (1984).

    CAS  Article  Google Scholar 

  26. Livingstone, M. S. & Hubel, D. H. Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity? J. Neurosci. 11, 4334–4339 (1987).

    Google Scholar 

  27. Duffy, C. J. & Wurtz, R. H. Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci. 15, 5192–5208 (1995).

    CAS  Article  Google Scholar 

  28. Sereno, A. B. & Maunsell, J. H. R. Shape selectivity in primate lateral intraparietal cortex. Nature 395, 500–503 (1998).

    CAS  Article  Google Scholar 

  29. Kellman, P. J. & Shipley, T. F. A theory of visual interpolation in object perception. Cognit. Psychol. 23, 141–221 (1991).

    CAS  Article  Google Scholar 

  30. Miyashita, Y. & Hayashi, T. Neural representation of visual objects: encoding and top-down activation. Curr. Opin. Neurobiol. 10, 187–194 (2000).

    CAS  Article  Google Scholar 

  31. Sigman, M. & Gilbert, C. D. Learning to find a shape. Nat. Neurosci. 3, 264–269 (2000).

    CAS  Article  Google Scholar 

  32. Sugita, Y. Grouping of image fragments in primary visual cortex. Nature 401, 269–272 (1999).

    CAS  Article  Google Scholar 

  33. Kovacs, I. & Julesz, B. A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. Proc. Natl. Acad. Sci. USA 90, 7495–7497 (1993).

    CAS  Article  Google Scholar 

  34. Elder, J. H. & Zucker, S. W. Evidence for boundary-specific grouping. Vision Res. 38, 143–152 (1998).

    CAS  Article  Google Scholar 

  35. Yin, C., Kellman, P. J. & Shipley, T. F. Surface completion complements boundary interpolation in the visual integration of partly occluded objects. Perception 26, 1459–1479 (1997).

    CAS  Article  Google Scholar 

  36. Rensink, R. A. & Enns, J. T. Early completion of occluded objects. Vision Res. 38, 2489–2505 (1998).

    CAS  Article  Google Scholar 

  37. Grossberg, S. & Mingolla, E. Neural dynamics of form perception: boundary completion. Psychol. Rev. 92, 173–211 (1985).

    CAS  Article  Google Scholar 

  38. Grossberg, S. Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. Psychol. Rev. 104, 618–658 (1997).

    CAS  Article  Google Scholar 

  39. Lamme, V. A., Rodriguez-Rodriguez, V. & Spekreijse, H. Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cereb. Cortex 9, 406–413 (1999).

    CAS  Article  Google Scholar 

  40. Field, D. J., Hayes, A. & Hess, R. F. Contour integration by the human visual system: evidence for a local “association field.” Vision Res. 33, 173–193 (1993).

    CAS  Article  Google Scholar 

  41. Polat, U. & Sagi, D. The architecture of perceptual spatial interactions. Vision Res. 34, 73–78 (1994).

    CAS  Article  Google Scholar 

  42. Gilbert, C. D. Horizontal integration and cortical dynamics. Neuron 9, 1–13 (1992).

    CAS  Article  Google Scholar 

  43. Kapadia, M. K., Ito, M., Gilbert, C. D. & Westheimer, G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

    CAS  Article  Google Scholar 

  44. Pasupathy, A. & Connor, C. E. Responses to contour features in Macaque area V4. J. Neurophysiol. 82, 2490–2502 (1999).

    CAS  Article  Google Scholar 

  45. Gallant, J. L., Connor, C. E., Rakshit, S., Lewis, J. W. & Van Essen, D. C. Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. J. Neurophysiol. 76, 2718–2739 (1996).

    CAS  Article  Google Scholar 

  46. Kobatake, E. & Tanaka, K. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cortex. J. Neurophysiol. 71, 856–867 (1994).

    CAS  Article  Google Scholar 

  47. Hupé, J. M. et al. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394, 784–787 (1998).

    Article  Google Scholar 

  48. Hildreth, E. & Koch, C. The analysis of visual motion: From computational theory to neuronal mechanisms. Annu. Rev. Neurosci. 10, 477–533 (1987).

    CAS  Article  Google Scholar 

  49. Yuille, A. L. & Grzywacz, N. M. A computational theory for the perception of coherent visual motion. Nature 333, 71–74 (1988).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Supported by the CNRS and by a Long-Term Fellowship from Human Frontiers Science Programme to D.A. Thanks to D. Shulz and Y. Frégnac for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Lorenceau.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lorenceau, J., Alais, D. Form constraints in motion binding. Nat Neurosci 4, 745–751 (2001). https://doi.org/10.1038/89543

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89543

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing