Article | Published:

An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia

Nature Neuroscience volume 3, pages 729736 (2000) | Download Citation

Subjects

Abstract

We designed a protocol distinguishing between automatic and intentional motor reactions to changes in target location triggered at movement onset. In response to target jumps, but not to a similar change cued by a color switch, normal subjects often could not avoid automatically correcting fast aiming movements. This suggests that an ‘automatic pilot’ relying on spatial vision drives fast corrective arm movements that can escape intentional control. In a patient with a bilateral posterior parietal cortex (PPC) lesion, motor corrections could only be slow and deliberate. We propose that ‘on-line’ control is the most specific function of the PPC and that optic ataxia could result from a disruption of automatic hand guidance.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & From eye to hand: planning goal-directed movements. Neurosci. Biobehav. Rev. 22, 761–788 (1998).

  2. 2.

    et al. Integrated control of hand transport and orientation during prehension movements. Exp. Brain Res. 110, 265–278 (1996).

  3. 3.

    et al. Postural and synergic control for three-dimensional movements of reaching and grasping. J. Neurophysiol. 74, 905–910 (1995).

  4. 4.

    , , & Selective perturbation of visual input during prehension movements. 1. The effect of changing object position. Exp. Brain Res. 83, 502–512 (1991).

  5. 5.

    , & Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320, 748–750 (1986).

  6. 6.

    , & Error processing in pointing at randomly feedback-induced double-step stimuli. J. Motor Behav. 25, 299–308 (1993).

  7. 7.

    & Saccadic suppression of displacement: separate influences of saccade size and of target retinal eccentricity. Vision Res. 37, 1779–1797 (1997).

  8. 8.

    , , & Visual control of reaching movements without vision of the limb. II. Evidence of fast unconscious processes correcting the trajectory of the hand to the final position of a double step stimulus. Exp. Brain Res. 62, 303–311 (1986).

  9. 9.

    & Automatic control during hand reaching at undetected two-dimensional target displacements. J. Neurophysiol. 67, 455–469 (1992).

  10. 10.

    , & in Handbook of Neuropsychology Vol. 9 (eds. Boller, F. & Grafman, J.) 233–252 (Elsevier, Amsterdam, 1994).

  11. 11.

    , , , & Manual interference in anarchic hand syndrome: evidence that visual affordances direct action. Cognit. Neuropsychol. 15, 645–684 (1998).

  12. 12.

    , , & On the synchrony of stopping motor responses and delaying heartbeats. J. Exp. Psychol. Hum. Percept. Perform. 18, 422–436 (1992).

  13. 13.

    , & Strategies and mechanisms in nonselective and selective inhibitory motor control. J. Exp. Psychol. Hum. Percept. Perform. 21, 498–511 (1995).

  14. 14.

    Human autonomy and the frontal lobes. Ann. Neurol. 19, 326–343 (1986).

  15. 15.

    , & in Attention and Performance XVIII (eds. Monsell, S. & Driver, J.) (MIT Press, Cambridge, Massachusetts, in press).

  16. 16.

    , , & Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20, 303–330 (1997).

  17. 17.

    Properties of reach-related neuronal activity in cortical area 7a. J. Neurophysiol. 67, 1331–1345 (1992).

  18. 18.

    , & Parietal cortex and spatial-postural transformation during arm movements. J. Neurophysiol. 79, 478–482 (1998).

  19. 19.

    , , & Human functional anatomy of visually guided finger movements. Brain 115, 565–587 (1992).

  20. 20.

    Reliability, accuracy, and refractoriness of a transit reaction. Res. Q. 31, 217–228 (1960).

  21. 21.

    in Attention and Performance IX (eds. Long, J. & Baddeley, A. D.) 205–222 (Erlbaum, Hillsdale, New Jersey, 1981).

  22. 22.

    in Inhibitory Processes in Attention, Memory, and Language (eds. Dagenbach, D. & Carr, T. H.) 214–249 (Academic, San Diego, 1994).

  23. 23.

    Etude neuropsychologique et psychophysique de l'ataxie optique. Thèse, Univ. Claude Bernard Lyon I (1980).

  24. 24.

    Mechanisms of visuo-motor coordination: a study in normals and brain-damaged subjects. Neuropsychologia 24, 41–78 (1986).

  25. 25.

    & Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111, 643–674 (1988).

  26. 26.

    , , , & A paradoxical improvement of misreaching in optic ataxia: new evidence for two separate neural systems for visual localization. Proc. R. Soc. Lond. B 266, 2225–2229 (1999).

  27. 27.

    , & Eye blindness and hand sight: temporal aspects of visuo-motor processing. Vis. Cognit. (in press).

  28. 28.

    , & Temporal dissociation of motor responses and subjective awareness. A study in normal subjects. Brain 114, 2639–2655 (1991).

  29. 29.

    & The Visual Brain in Action (Oxford Univ. Press, Oxford, 1995).

  30. 30.

    ‘Utilization behavior’ and its relation to lesions of the frontal lobes. Brain 106, 237–255 (1983).

  31. 31.

    Task interruption in prospective memory: a frontal lobe function? Cortex 31, 87–97 (1995).

  32. 32.

    & in Two Cortical Visual Systems (eds. Ingle, D. J., Goodale, M. A. & Mansfield, R. W. J.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

  33. 33.

    & in Extrastriate Cortex in Primates (eds. Kaas, J., Rochland, K. & Peters, A.) 205–241 (Plenum, New York, 1997).

  34. 34.

    , , & Direct visual pathways for reaching movements in the macaque monkey. Neuroreport 7, 267–272 (1995).

  35. 35.

    Implicit short-lived motor representations of space in brain damaged and healthy subjects. Conscious. Cogn. 7, 520–558 (1998).

  36. 36.

    & Parietal control of hand action. Curr. Opin. Neurobiol. 4, 847–856 (1994).

  37. 37.

    , & Parietal cortex and movement I. Movement selection and reaching. Exp. Brain Res. 2, 292–310 (1997).

  38. 38.

    & in Beyond Dissociation: Interaction Between Dissociated Implicit and Explicit Processing. (eds. Rossetti, Y. & Revonsuo, A.) 129–152 (Benjamins, Amsterdam, 2000).

  39. 39.

    et al. Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat. Neurosci. 2, 563–567 (1999).

  40. 40.

    , & Role of retinal feedback of target position in guiding the hand. Exp. Brain Res. 62, 293–302 (1986).

  41. 41.

    , , & A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29, 803–809 (1991).

  42. 42.

    , & Effects of posterior parietal lesions on visually guided movements in monkeys. Exp. Brain Res. 59, 125–128 (1985).

  43. 43.

    Distributed motor processing in cerebral cortex. Curr. Opin. Neurobiol. 4, 840–846 (1994).

  44. 44.

    , , , & Motor role of human inferior parietal lobe revealed in unilateral neglect patients. Nature 392, 179–182 (1998).

  45. 45.

    et al. The effects of competition and motor reprogramming on visuomotor selection in unilateral neglect. Exp. Brain Res. 120, 243–256 (1998).

  46. 46.

    , & Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia 32, 369–380 (1994).

  47. 47.

    , , , & Visual illusion and action. Neuropsychologia 34, 369–376 (1996).

  48. 48.

    & Perceptual associations and visuomotor programming. Cogn. Neurosci. (in press).

  49. 49.

    , & The timing of color and location processing in the motor context. Exp. Brain Res. 121, 270–276 (1998).

  50. 50.

    & Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, Stuttgart, 1988).

Download references

Acknowledgements

This work was supported by Région Rhône-Alpes and a grant from the Center for Consciousness Research (University of Arizona). The authors thank A.D. Milner, D. Pelisson and C. Prablanc for their comments on a previous version of the manuscript, M. Arzi for the software programming, P. Mazoyer, J.L. Borach, M. Soulier and S. Terronnes for their technical assistance, and patient I.G. for her collaboration.

Author information

Affiliations

  1. Espace et Action, INSERM U534, 16 avenue Lépine, C.P. 13, 69676 Bron Cedex, France

    • L. Pisella
    • , H. Gréa
    • , C. Tilikete
    • , A. Vighetto
    • , M. Desmurget
    • , G. Rode
    • , D. Boisson
    •  & Y. Rossetti
  2. Hospices Civils de Lyon, 59 Bd. Pinel, 69003 Lyon, France, and Université Claude Bernard, Lyon, France

    • C. Tilikete
    • , A. Vighetto
    • , G. Rode
    • , D. Boisson
    •  & Y. Rossetti

Authors

  1. Search for L. Pisella in:

  2. Search for H. Gréa in:

  3. Search for C. Tilikete in:

  4. Search for A. Vighetto in:

  5. Search for M. Desmurget in:

  6. Search for G. Rode in:

  7. Search for D. Boisson in:

  8. Search for Y. Rossetti in:

Corresponding author

Correspondence to Y. Rossetti.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/76694

Further reading