Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of similarity and history on neural mechanisms of visual selection

Abstract

To investigate how the brain combines knowledge with visual processing to locate eye movement targets, we trained monkeys to search for a target defined by a conjunction of color and shape. On successful trials, neurons in the frontal eye field not only discriminated the target from distractors, but also discriminated distractors that shared a target feature as well as distractors that had been the search target during the previous session. Likewise, occasional errant saccades tended to direct gaze to distractors that either resembled the current target or had been the previous target. These findings show that the frontal eye field is involved in visual and not just motor selection and that visual selection is influenced by long-term priming. The data support the hypothesis that visual selection can be accomplished by parallel processing of objects based on their elementary features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral tasks.
Figure 2: Gaze pattern in conjunction search during neural recordings.
Figure 3: Activity of two FEF neurons as a function of the conjunction stimulus type in the receptive field.
Figure 4: Feature-based selection and long-term priming in FEF during conjunction search.

Similar content being viewed by others

References

  1. Schall, J. D. & Bichot, N. P. Neural correlates of visual and motor decision processes. Curr. Opin. Neurobiol. 8, 211–217 (1998).

    Article  CAS  Google Scholar 

  2. Schall, J. D. in Extrastriate Cortex of Primates, vol. 12, Cerebral Cortex (eds. Rockland, K. S., Kaas, J. H. & Peters, A.) 527– 638 (Plenum, New York, 1997).

    Book  Google Scholar 

  3. Baizer, J. S., Ungerleider, L. G. & Desimone, R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J. Neurosci. 11, 168–190 (1991).

    Article  CAS  Google Scholar 

  4. Schall, J. D., Morel, A., King, D.J. & Bullier, J. Topography of visual cortical afferents to frontal eye field in macaque: functional convergence and segregation of processing streams. J. Neurosci. 15, 4464–4487 (1995).

    Article  CAS  Google Scholar 

  5. Segraves, M. A. & Goldberg, M. E. Functional properties of corticotectal neurons in the monkey's frontal eye field. J. Neurophysiol. 58, 1387–1419 (1987).

    Article  CAS  Google Scholar 

  6. Segraves, M. A. Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. J. Neurophysiol. 68, 1967– 1985 (1992).

    Article  CAS  Google Scholar 

  7. Schall, J. D., Hanes, D. P., Thompson, K. G. & King, D. J. Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation. J. Neurosci. 15, 6905– 6918 (1995).

    Article  CAS  Google Scholar 

  8. Mohler, C. W., Goldberg, M. E. & Wurtz, R. H. Visual receptive fields of frontal eye field neurons. Brain Res. 61, 385–389 (1973).

    Article  CAS  Google Scholar 

  9. Yarbus, A. L. Eye Movements and Vision (Plenum, New York, 1967).

    Book  Google Scholar 

  10. Maljkovic, V. & Nakayama, K. Priming of pop-out: I. Role of features. Mem. Cognit. 22, 657– 672 (1994).

    Article  CAS  Google Scholar 

  11. Bichot, N. P. & Schall, J. D. Saccade target selection in macaque during feature and conjunction visual search. Visual Neurosci. 16, 81–89 (1999 ).

    Article  CAS  Google Scholar 

  12. Bichot, N. P., Schall, J. D. & Thompson, K. G. Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature 381 , 697–699 (1996).

    Article  CAS  Google Scholar 

  13. Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cognit. Psychol. 12, 97–136 (1980).

    Article  CAS  Google Scholar 

  14. Townsend, J. T. Serial vs parallel processing: Sometimes they look like tweedledum and tweedledee but they can (and should) be distinguished. Psychol. Sci. 1, 46–54 (1990).

    Article  Google Scholar 

  15. Nakayama, K. & Silverman, G. H. Serial and parallel processing of visual feature conjunctions. Nature 320, 264–265 (1986).

    Article  CAS  Google Scholar 

  16. McLeod, P., Driver, J. & Crisp, J. Visual search for conjunctions of movement and form is parallel. Nature 332, 154– 155 (1988).

    Article  CAS  Google Scholar 

  17. Wolfe, J. M., Cave, K. R. & Franzel, S. Guided search: An alternative to the feature integration model for visual search. J. Exp. Psychol. Hum. Percept. Perform. 15, 419–433 ( 1989).

    Article  CAS  Google Scholar 

  18. Duncan, J. & Humphreys, G. W. Visual search and stimulus similarity. Psychol. Rev. 96, 433– 458 (1989).

    Article  CAS  Google Scholar 

  19. Cave, K. R. & Wolfe, J. M. Modeling the role of parallel processing in visual search. Cognit. Psychol. 22, 225 –271 (1990).

    Article  CAS  Google Scholar 

  20. Wolfe, J. M. Guided search 2.0. A revised model of visual search. Psychonomic Bull. Rev. 1, 202–228 ( 1994).

    Article  CAS  Google Scholar 

  21. Treisman, A. & Sato, S. Conjunction search revisited. J. Exp. Psychol. Hum. Percept. Perform. 16, 456– 478 (1990).

    Article  Google Scholar 

  22. Williams, L. G. The effects of target specification on objects fixated during visual search. Acta Psychol. (Amst.) 27, 355– 360 (1967).

    Article  CAS  Google Scholar 

  23. Findlay, J. M. Saccade target selection during visual search. Vision Res. 37, 617–631 (1997).

    Article  CAS  Google Scholar 

  24. Kim, M.-S. & Cave, K. R. Spatial attention in visual search for features and feature conjunctions. Psychol. Sci. 6, 376–380 (1995).

    Article  Google Scholar 

  25. Kowler, E., Anderson, E., Dosher, B. & Blaser, E. The role of attention in the programming of saccades. Vision Res. 35, 1897–1916 (1995).

    Article  CAS  Google Scholar 

  26. Sheliga, B. M., Riggio, L. & Rizzolatti, G. Spatial attention and eye movements. Exp. Brain Res. 105, 261–275 (1995).

    Article  CAS  Google Scholar 

  27. Deubel, H. & Schneider, W. X. Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Res. 36, 1827–1837 (1996).

    Article  CAS  Google Scholar 

  28. Kustov, A. A. & Robinson, D. L. Shared neural control of attentional shifts and eye movements. Nature 384, 74 –77 (1996).

    Article  CAS  Google Scholar 

  29. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193– 222 (1995).

    Article  CAS  Google Scholar 

  30. Shiffrin, R. M. & Schneider, W. Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychol. Rev. 84, 127–190 (1977).

    Article  Google Scholar 

  31. Bruce, C. J., Goldberg, M. E., Bushnell, M. C. & Stanton, G. B. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54, 714–734 (1985).

    Article  CAS  Google Scholar 

  32. Buttner-Ennever, J. A., Cohen, B., Pause, M. & Fries, W. Raphe nucleus of the pons containing omnipause neurons of the oculomotor system in the monkey, and its homologue in man. J. Comp. Neurol. 267, 307–321 (1988).

    Article  CAS  Google Scholar 

  33. Thompson, K. G., Hanes, D. P., Bichot, N. P. & Schall, J. D. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J. Neurophysiol. 76, 4040–4055 ( 1996).

    Article  CAS  Google Scholar 

  34. Thompson, K. G., Bichot, N. P. & Schall, J. D. Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J. Neurophysiol. 77, 1046–1050 (1997).

    Article  CAS  Google Scholar 

  35. Cave, K. R. The FeatureGate model of visual selection. Psychol. Res. (in press).

  36. Thompson, K. G. & Bichot, N. P. Frontal eye field: a cortical salience map. Behav. Brain Sci. (in press).

  37. Sayer, R. J., Friedlander, M. J. & Redman, S. J. The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice. J. Neurosci. 10, 826–836 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Randolph Blake and Kirk Thompson for discussions and comments on the manuscript and Sheldon Hoffman for assistance with the TEMPO software. This work was supported by National Eye Institute grants RO1-EY08890 to J.D.S. and P30-EY08126 and T32-EY07135 to the Vanderbilt Vision Research Center. J.D.S. is a Kennedy Center Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Schall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bichot, N., Schall, J. Effects of similarity and history on neural mechanisms of visual selection . Nat Neurosci 2, 549–554 (1999). https://doi.org/10.1038/9205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing