Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Target-specific control of nicotinic receptor expression at developing interneuronal synapses in chick

Abstract

Neuronal differentiation and development of synaptic specializations are strongly influenced by cellular interactions. We compared the effects of interaction with distinct autonomic targets on the molecular and biophysical differentiation of 'upstream' neuron–neuron synapses. Contact with cardiac tissue induced expression of nicotinic receptor channels (nAChRs) distinct from those induced by renal tissue in presynaptic autonomic neurons. The kinetics of cholinergic currents at interneuronal synapses are dictated by the peripheral target contacted. Analysis of the nAChR channel subtypes and subunits in individual neurons demonstrated that the profile of transmitter receptors expressed at mature neuron–neuron synapses develops from the convergent influences of input-derived (anterograde) and target-specific (retrograde) signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous synaptic currents from individual innervated sympathetic neurons: effect of target interactions.
Figure 2: Target-specific regulation of nAChR-mediated macroscopic and synaptic currents.
Figure 3: Synaptic nAChR channel properties and subunit gene expression are regulated by target.
Figure 4: Target contact differentially regulates the profile of nAChR channels and subunit gene expression in non-innervated sympathetic neurons.
Figure 5: Characterization of qPCR assay used to measure α3, α5, α7 and β4 mRNA levels in individual neurons.

Similar content being viewed by others

References

  1. Ozaki, M., Sasner, M., Yano, R., Lu, H. S. & Buonanno, A. Neuregulin-beta induces expression of an NMDA-receptor subunit. Nature 390, 691– 694 (1997).

    Article  CAS  Google Scholar 

  2. Yang, X., Kuo, Y., Devay, P., Yu, C. & Role, L. A cysteine-rich isoform of neuregulin controls nicotinic receptor expression in neurons during synaptogenesis. Neuron 20, 255–270 (1998).

    Article  CAS  Google Scholar 

  3. Devay, P., Qu, X. & Role, L. W. Regulation of nAChR-subunit gene expression relative to the development of pre- and postsynaptic projections of embryonic chick sympathetic neurons. Dev. Biol. 162, 56–70 (1994).

    Article  CAS  Google Scholar 

  4. Moss, B. L., Schuetze, S. M. & Role, L. W. Functional properties and developmental regulation of nicotinic acetylcholine receptors on embryonic chicken sympathetic neurons. Neuron 3, 597–607 (1989).

    Article  CAS  Google Scholar 

  5. Jacob, M. H. & Berg, D. K. Effects of preganglionic denervation and postganglionic axotomy on acetylcholine receptors in the chick ciliary ganglion. J. Cell Biol. 105, 1847– 1854 (1987).

    Article  CAS  Google Scholar 

  6. Brenner, H. R. & Martin, A. R. Reduction in acetylcholine sensitivity of axotomized ciliary ganglion cells. J. Physiol. (Lond.) 260, 159–175 (1976).

    Article  CAS  Google Scholar 

  7. Schwartz Levey, M., Brumwell, C. L., Dryer, S. E. & Jacob, M. H. Innervation and target tissue interactions differentially regulate acetylcholine receptor subunit mRNA levels in developing neurons in situ. Neuron 14, 153–162 ( 1995).

    Article  Google Scholar 

  8. Halversen, S. W. & Berg, D. K. Regulation of acetylcholine receptors on chick ciliary ganglion neurons by components from the synaptic target tissue. J. Neurosci. 11, 2177–2186 (1991).

    Article  Google Scholar 

  9. Moss, B. L. & Role, L. W. Enhanced ACh sensitivity is accompanied by changes in ACh receptor channel properties and segregation of ACh receptor subtypes on sympathetic neurons during innervation in vivo. J. Neurosci. 13, 13–29 ( 1993).

    Article  CAS  Google Scholar 

  10. Role, L. W. Neural regulation of acetylcholine sensitivity in embryonic sympathetic neurons Proc. Natl. Acad. Sci. USA 85, 2825– 2829 (1988).

    Article  CAS  Google Scholar 

  11. Gardette, R., Listerud, M., Brussaard, A. B. & Role, L. W. Developmental changes in transmitter sensitivity and synaptic transmission in innervated embryonic chicken sympathetic neurons in vitro. Dev. Biol. 147, 83–95 ( 1991).

    Article  CAS  Google Scholar 

  12. McGehee, D. & Role, L. Physiological diversity of acetylcholine receptor channels expressed in vertebrate neurons. Annu. Rev. Physiol. 57, 521–546 ( 1995).

    Article  CAS  Google Scholar 

  13. Role, L. & Berg, D. K. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16, 1077–1085 (1996).

    Article  CAS  Google Scholar 

  14. Corriveau, R. A. & Berg, D. K. Coexpression of multiple acetylcholine receptor genes in neurons: quantification of transcripts during development. J . Neurosci. 13, 2662 –2671 (1993).

    Article  CAS  Google Scholar 

  15. Listerud, M., Brussaard, A. B., Devay, P., Colman, D. R. & Role, L. W. Functional contribution of neuronal AChR subunits revealed by antisense oligonucleotides. Science. 254, 1518–1521 ( 1991).

    Article  CAS  Google Scholar 

  16. Conroy, W. G. & Berg, D. K. Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions. J. Biol. Chem. 270, 4424– 4431 (1995).

    Article  CAS  Google Scholar 

  17. Horch, H. L. & Sargent, P. B. Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion. J. Neurosci. 15, 7778–7795 (1995).

    Article  CAS  Google Scholar 

  18. Yu, C. & Role, L. Functional contribution of the α7 subunit to multiple subtypes of nicotinic receptors in embryonic chick sympathetic neurons. J. Physiol. (Lond.) 509, 651– 665 (1998).

    Article  CAS  Google Scholar 

  19. Anand, R., Peng, X. & Lindstrom, J. Homomeric and native α7 acetylcholine receptors exhibit remarkably similar but non-identical pharmacological properties, suggesting that the native receptor is a heteromeric protein complex. FEBS Lett. 327, 241–246 ( 1993).

    Article  CAS  Google Scholar 

  20. Yu, C. R. & Role, L. W. Functional contribution of the alpha5 subunit to neuronal nicotinic channels expressed by chick sympathetic ganglion neurones. J. Physiol. (Lond.) 509, 667– 681 (1998).

    Article  CAS  Google Scholar 

  21. Ramirez-Latorre, J. et al. Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380, 347– 351 (1996).

    Article  CAS  Google Scholar 

  22. Sivilotti, L. G. et al. Recombinant nicotinic receptors, expressed in Xenopus oocytes, do not resemble native rat sympathetic ganglion receptors in single-channel behavior. J. Physiol. (Lond.) 500, 123– 138 (1997).

    Article  CAS  Google Scholar 

  23. Wang, F. Assembly of human neuronal nicotinic receptor alpha5 subunits with alpha3, beta2 & beta4 subunits. J. Biol. Chem. 271, 17656–17665 (1996).

    Article  CAS  Google Scholar 

  24. Yu, C., Brussaard, A. B., Yang, X., Listerud, M. & Role, L. W. Uptake and functional modification of specific nAChR channels by subunit specific antisense oligonucleotides in developing primary neurons. Dev. Genet. 14, 296–304 (1993).

    Article  CAS  Google Scholar 

  25. Nef, P., Oneyser, C., Alliod, C., Courturier, S. & Ballivet, M. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J. 7, 595–601 (1988).

    Article  CAS  Google Scholar 

  26. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 ( 1981).

    Article  CAS  Google Scholar 

  27. Hogg, R. V. & Craig, A. T. Introduction to Mathematical Statistics , 3rd edn. 348–378 (Macmillan, New York 1970).

    Google Scholar 

Download references

Acknowledgements

We thank P. Flood for help in initial aspects of these studies, M. Kopal and A. Tang for technical assistance, J. Turner for editorial assistance and our colleagues S. Siegelbaum and A. MacDermott for comments on this work. We also thank N. Mendell for mathematical statistics consults and D. Talmage for detailed review of molecular methods and analyses. This work was supported by NS29071 to L.W.R. and P.D. and by NS35090 to D.S.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Devay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devay, P., McGehee, D., Yu, C. et al. Target-specific control of nicotinic receptor expression at developing interneuronal synapses in chick. Nat Neurosci 2, 528–534 (1999). https://doi.org/10.1038/9183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing