Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular heterogeneity of central synapses: afferent and target regulation

Abstract

Electrophysiological recordings show a functional spectrum even within a single class of synapse, with individual synapses ranging widely in fundamental properties, including release probability, unitary response and effects of previous stimulation on subsequent response. Molecular and cellular biological approaches have shown a corresponding diversity in the complement of ion channels, receptors, scaffolds and signal transducing proteins that make up individual synapses. Indeed, we believe that each individual synapse is unique, a function of presynaptic cell type, postsynaptic cell type, environment, developmental stage and history of activity. We review here the molecular diversity of glutamatergic and GABAergic synapses in the mammalian brain in the context of potential cell biological mechanisms that may explain how individual cells develop and maintain such a mosaic of synaptic connections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular mechanisms for the generation of synaptic heterogeneity.
Figure 2: Molecular components of glutamate synapses and GABA synapses.
Figure 3: Mechanisms of postsynaptic protein targeting and potential sites of afferent-specific influence (*).
Figure 4: Selective localization of mGluR7a receptors to presynaptic sites formed onto GABAergic interneurons.
Figure 5: Model for the trafficking of glutamate AMPA receptors at postsynaptic sites.

Similar content being viewed by others

References

  1. Gray, E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J. Anat. 93, 420–433 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sudhof, T. C. The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature 375, 645–653 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Ullrich, B. et al. Functional properties of multiple synaptotagmins in brain. Neuron 13, 1281–1291 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Trimble, W. S., Gray, T. S., Elferink, L. A., Wilson, M. C. & Scheller, R. H. Distinct patterns of expression of two VAMP genes within the rat brain. J. Neurosci. 10, 1380–1387 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Morgans, C. W., Brandstatter, J. H., Kellerman, J., Betz, H. & Wassle, H. A SNARE complex containing syntaxin 3 is present in ribbon synapses of the retina. J. Neurosci. 16, 6713–6721 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    Article  CAS  Google Scholar 

  7. Fenster, S. D. et al. Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 25, 203–214 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Ribak, C. E. & Roberts, R. C. GABAergic synapses in the brain identified with antisera to GABA and its synthesizing enzyme, glutamate decarboxylase. J. Electron Microsc. Tech. 15, 34–48 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Minelli, A., Brecha, N. C., Karschin, C., DeBiasi, S. & Conti, F. GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J. Neurosci. 15, 7734–7746 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Dumoulin, A. et al. Presence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons. J. Cell Sci. 112, 811–823 (1999).

    CAS  PubMed  Google Scholar 

  11. Chaudhry, F. A. et al. The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J. Neurosci. 18, 9733–9750 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Esclapez, M., Tillakaratne, N. J., Kaufman, D. L., Tobin, A. J. & Houser, C. R. Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J. Neurosci. 14, 1834–1855 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Sagne, C. et al. Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases. FEBS Lett. 417, 177–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Crump, F. T., Fremeau, R. T. & Craig, A. M. Localization of the brain-specific high-affinity l-proline transporter in cultured hippocampal neurons: molecular heterogeneity of synaptic terminals. Mol. Cell. Neurosci. 13, 25–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Takamori, S., Rhee, J. S., Rosenmund, C. & Jahn, R. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Bellocchio, E. E., Reimer, R. J., Fremeau, R. T. & Edwards, R. H. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957–960 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. McMahon, L. L. & Kauer, J. A. Hippocampal interneurons express a novel form of synaptic plasticity. Neuron 18, 295–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Kennedy, M. B. Signal transduction molecules at the glutamatergic postsynaptic membrane. Brain Res. Brain Res. Rev. 26, 243–257 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Sik, A., Hajos, N., Gulacsi, A., Mody, I. & Freund, T. F. The absence of a major Ca2+ signaling pathway in GABAergic neurons of the hippocampus. Proc. Natl. Acad. Sci. USA 95, 3245–3250 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Barria, A., Muller, D., Derkach, V., Griffith, L. C. & Soderling, T. R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276, 2042–2045 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F. & Huganir, R. L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Rao, A., Kim, E., Sheng, M. & Craig, A. M. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J. Neurosci. 18, 1217–1229 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, W., Vazquez, L., Apperson, M. & Kennedy, M. B. Citron binds to PSD-95 at glutamatergic synapses on inhibitory neurons in the hippocampus. J. Neurosci. 19, 96–108 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Allison, D. W., Gelfand, V. I., Spector, I. & Craig, A. M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 2423–2436 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Yuste, R., Majewska, A. & Holthoff, K. From form to function: calcium compartmentalization in dendritic spines. Nat. Neurosci. 3, 653–659 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Alvarez, F. J., Dewey, D. E., Harrington, D. A. & Fyffe, R. E. Cell-type specific organization of glycine receptor clusters in the mammalian spinal cord. J. Comp. Neurol. 379, 150–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Nusser, Z., Roberts, J. D., Baude, A., Richards, J. G. & Somogyi, P. Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method. J. Neurosci. 15, 2948–2960 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. Distribution of glycine receptors at central synapses: an immunoelectron microscopy study. J. Cell Biol. 101, 683–688 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O. P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2, 618–624 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Racca, C., Stephenson, F. A., Streit, P., Roberts, J. D. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20, 2512–2522 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Craig, A. M., Blackstone, C. D., Huganir, R. L. & Banker, G. Selective clustering of glutamate and gamma-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. Proc. Natl. Acad. Sci. USA 91, 12373–12377 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Levi, S., Chesnoy-Marchais, D., Sieghart, W. & Triller, A. Synaptic control of glycine and GABA(A) receptors and gephyrin expression in cultured motoneurons. J. Neurosci. 19, 7434–7449 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Francis, N. J. & Landis, S. C. Cellular and molecular determinants of sympathetic neuron development. Annu. Rev. Neurosci. 22, 541–566 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Rao, A., Cha, E. M. & Craig, A. M. Mismatched appositions of presynaptic and postsynaptic components in isolated hippocampal neurons. J. Neurosci. 20, 8344–8353 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Bekkers, J. M. & Stevens, C. F. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl. Acad. Sci. USA 88, 7834–7838 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Segal, M. M. Epileptiform activity in microcultures containing one excitatory hippocampal neuron. J. Neurophysiol. 65, 761–770 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Nusser, Z., Sieghart, W., Stephenson, F. A. & Somogyi, P. The alpha 6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells. J. Neurosci. 16, 103–114 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Hanson, J. E. & Smith, Y. Group I metabotropic glutamate receptors at GABAergic synapses in monkeys. J. Neurosci. 19, 6488–6496 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Tsen, G. et al. Receptors with opposing functions are in postsynaptic microdomains under one presynaptic terminal. Nat. Neurosci. 3, 126–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Featherstone, D. E. et al. Presynaptic glutamic acid decarboxylase is required for induction of the postsynaptic receptor field at a glutamatergic synapse. Neuron 27, 71–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Levi, S., Vannier, C. & Triller, A. Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. J. Cell Sci. 111, 335–345 (1998).

    CAS  PubMed  Google Scholar 

  44. Kirsch, J. & Betz, H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392, 717–720 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. McKinney, R. A., Capogna, M., Durr, R., Gahwiler, B. H. & Thompson, S. M. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat. Neurosci. 2, 44–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Verderio, C., Coco, S., Fumagalli, G. & Matteoli, M. Spatial changes in calcium signaling during the establishment of neuronal polarity and synaptogenesis. J. Cell Biol. 126, 1527–1536 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Mammen, A. L., Huganir, R. L. & O'Brien, R. J. Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci. 17, 7351–7358 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Cottrell, J. R., Dube, G. R., Egles, C. & Liu, G. Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J. Neurophysiol. 84, 1573–1587 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864–869 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Missler, M., Fernandez-Chacon, R. & Sudhof, T. C. The making of neurexins. J. Neurochem. 71, 1339–1347 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Colman, D. R. Neurites, synapses, and cadherins reconciled. Mol. Cell. Neurosci. 10, 1–6 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Uchida, N., Honjo, Y., Johnson, K. R., Wheelock, M. J. & Takeichi, M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol. 135, 767–779 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Kohmura, N. et al. Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20, 1137–1151 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Buchert, M. et al. The junction-associated protein AF-6 interacts and clusters with specific Eph receptor tyrosine kinases at specialized sites of cell–cell contact in the brain. J. Cell Biol. 144, 361–371 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Torres, R. et al. PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21, 1453–1463 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Benson, D. L. & Tanaka, H. N-cadherin redistribution during synaptogenesis in hippocampal neurons. J. Neurosci. 18, 6892–6904 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. O'Brien, R. J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate- early gene product Narp. Neuron 23, 309–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, L. et al. Stargazing regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Xia, J., Zhang, X., Staudinger, J. & Huganir, R. L. Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 22, 179–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Naisbitt, S. et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23, 569–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Liu, X. B. & Jones, E. G. Localization of alpha type II calcium calmodulin-dependent protein kinase at glutamatergic but not gamma-aminobutyric acid (GABAergic) synapses in thalamus and cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 7332–7336 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, J. H., Liao, D., Lau, L. F. & Huganir, R. L. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Wyszynski, M. et al. Association of AMPA receptors with a subset of glutamate receptor-interacting protein in vivo. J. Neurosci. 19, 6528–6537 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Dong, H. et al. Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2. J. Neurosci. 19, 6930–6941 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Osten, P. et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. Neuron 21, 99–110 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Sassoe-Pognetto, M. & Fritschy, J. M. Mini-review: gephyrin, a major postsynaptic protein of GABAergic synapses. Eur. J. Neurosci. 12, 2205–2210 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282, 1321–1324 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Kneussel, M. et al. Loss of postsynaptic GABA(A) receptor clustering in gephyrin-deficient mice. J. Neurosci. 19, 9289–9297 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).

    Article  CAS  Google Scholar 

  71. Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (Lond.) 472, 615–663 (1993).

    Article  CAS  PubMed Central  Google Scholar 

  72. Watanabe, M. et al. Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre-recipient layer) of the mouse hippocampal CA3 subfield. Eur. J. Neurosci. 10, 478–487 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Fritschy, J. M., Weinmann, O., Wenzel, A. & Benke, D. Synapse-specific localization of NMDA and GABA(A) receptor subunits revealed by antigen-retrieval immunohistochemistry. J. Comp. Neurol. 390, 194–210 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Toth, K. & McBain, C. J. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons. Nat. Neurosci. 1, 572–578 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Vicario-Abejon, C., Collin, C., McKay, R. D. & Segal, M. Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J. Neurosci. 18, 7256–7271 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Mohrmann, R., Werner, M., Hatt, H. & Gottmann, K. Target-specific factors regulate the formation of glutamatergic transmitter release sites in cultured neocortical neurons. J. Neurosci. 19, 10004–10013 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Fletcher, T. L., De Camilli, P. & Banker, G. Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J. Neurosci. 14, 6695–6706 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, H. M., Wenthold, R. J. & Petralia, R. S. Glutamate receptor targeting to synaptic populations on Purkinje cells is developmentally regulated. J. Neurosci. 18, 5517–5528 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Goldstein, L. S. & Yang, Z. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Setou, M., Nakagawa, T., Seog, D. H. & Hirokawa, N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796–1802 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Rubio, M. E. & Wenthold, R. J. Differential distribution of intracellular glutamate receptors in dendrites. J. Neurosci. 19, 5549–5562 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Burack, M. A., Silverman, M. A. & Banker, G. The role of selective transport in neuronal protein sorting. Neuron 26, 465–472 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kornau, H. C., Seeburg, P. H. & Kennedy, M. B. Interaction of ion channels and receptors with PDZ domain proteins. Curr. Opin. Neurobiol. 7, 368–373 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Ehlers, M. D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Lin, J. W. et al. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nat. Neurosci. 3, 1282–1290 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Steward, O. Targeting of mRNAs to subsynaptic microdomains in dendrites. Curr. Opin. Neurobiol. 5, 55–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Benson, D. L. Dendritic compartmentation of NMDA receptor mRNA in cultured hippocampal neurons. Neuroreport 8, 823–828 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Racca, C., Gardiol, A. & Triller, A. Dendritic and postsynaptic localizations of glycine receptor alpha subunit mRNAs. J. Neurosci. 17, 1691–1700 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Shigemoto, R. et al. Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature 381, 523–525 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Shigemoto, R. et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J. Neurosci. 17, 7503–7522 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Brandstatter, J. H., Koulen, P., Kuhn, R., van der Putten, H. & Wassle, H. Compartmental localization of a metabotropic glutamate receptor (mGluR7): two different active sites at a retinal synapse. J. Neurosci. 16, 4749–4756 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Scanziani, M., Gahwiler, B. H. & Charpak, S. Target cell-specific modulation of transmitter release at terminals from a single axon. Proc. Natl. Acad. Sci. USA 95, 12004–12009 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. USA 95, 5323–5328 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Schinder, A. F., Berninger, B. & Poo, M. Postsynaptic target specificity of neurotrophin-induced presynaptic potentiation. Neuron 25, 151–163 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Amaral, D. G. & Dent, J. A. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol. 195, 51–86 (1981).

    Article  CAS  PubMed  Google Scholar 

  97. Nusser, Z., Sieghart, W., Benke, D., Fritschy, J. M. & Somogyi, P. Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 11939–11944 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Benson, D. L. & Cohen, P. A. Activity-independent segregation of excitatory and inhibitory synaptic terminals in cultured hippocampal neurons. J. Neurosci. 16, 6424–6432 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Magee, J. C. & Cook, E. P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat. Neurosci. 3, 895–903 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Triller, A., Seitanidou, T., Franksson, O. & Korn, H. Size and shape of glycine receptor clusters in a central neuron exhibit a somato-dendritic gradient. New Biol. 2, 637–641 (1990).

    CAS  PubMed  Google Scholar 

  101. Liu, G. & Tsien, R. W. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375, 404–408 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Man, Y. H. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, Y. T. & Linden, D. J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Luscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Osten, P. et al. Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron 27, 313–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23, 365–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Lissin, D. V., Carroll, R. C., Nicoll, R. A., Malenka, R. C. & von Zastrow, M. Rapid, activation-induced redistribution of ionotropic glutamate receptors in cultured hippocampal neurons. J. Neurosci. 19, 1263–1272 (1999) (erratum, J. Neurosci. 19, 3275, 1999).

    Article  CAS  PubMed  Google Scholar 

  108. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Matsuda, S., Launey, T., Mikawa, S. & Hirai, H. Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J. 19, 2765–2774 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xia, J., Chung, H. J., Wihler, C., Huganir, R. L. & Linden, D. J. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28, 499–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Daw, M. I. et al. PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28, 873–886 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Liu, S. Q. & Cull-Candy, S. G. Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405, 454–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Rao, A. & Craig, A. M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801–812 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Crump, F. T., Dillman, K. & Craig, A. M. cAMP-dependent protein kinase mediates activity-regulated synaptic targeting of NMDA receptors. J. Neurosci. (in press).

  116. Lissin, D. V. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA 95, 7097–7102 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Liao, D., Zhang, X., O'Brien, R., Ehlers, M. D. & Huganir, R. L. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat. Neurosci. 2, 37–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Watt, A. J., van Rossum, M. C., MacLeod, K. M., Nelson, S. B. & Turrigiano, G. G. Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26, 659–670 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Elgersma, Y. & Silva, A. J. Molecular mechanisms of synaptic plasticity and memory. Curr. Opin. Neurobiol. 9, 209–213 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Shen, K. & Meyer, T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284, 162–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Strack, S., Choi, S., Lovinger, D. M. & Colbran, R. J. Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J. Biol. Chem. 272, 13467–13470 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Yoshimura, Y. & Yamauchi, T. Phosphorylation-dependent reversible association of Ca2+/calmodulin-dependent protein kinase II with the postsynaptic densities. J. Biol. Chem. 272, 26354–26359 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Puia, G., Costa, E. & Vicini, S. Functional diversity of GABA-activated Cl-currents in Purkinje versus granule neurons in rat cerebellar slices. Neuron 12, 117–126 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Hessler, N. A., Shirke, A. M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993).

    Article  CAS  PubMed  Google Scholar 

  126. Schikorski, T. & Stevens, C. F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17, 5858–5867 (1997).

    Article  CAS  PubMed  Google Scholar 

  127. Staple, J. K., Osen-Sand, A., Benfenati, F., Pich, E. M. & Catsicas, S. Molecular and functional diversity at synapses of individual neurons in vitro. Eur. J. Neurosci. 9, 721–731 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Rosenmund, C., Clements, J. D. & Westbrook, G. L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993).

    Article  CAS  PubMed  Google Scholar 

  129. Augustin, I., Rosenmund, C., Sudhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Craig, A. M. & Banker, G. Neuronal polarity. Annu. Rev. Neurosci. 17, 267–310 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Rao, K. Tovar and R. Wong for comments. Research in the authors' laboratory is supported by NIH grants NS33184, NS39286, NS34448 and the Pew Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Marie Craig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, A., Boudin, H. Molecular heterogeneity of central synapses: afferent and target regulation. Nat Neurosci 4, 569–578 (2001). https://doi.org/10.1038/88388

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing