Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel

Abstract

Potassium leak channels are essential to neurophysiological function. Leaks suppress excitability through maintenance of resting membrane potential below the threshold for action potential firing. Conversely, voltage-dependent potassium channels permit excitation because they do not interfere with rise to threshold, and they actively promote recovery and rapid re-firing. Previously attributed to distinct transport pathways, we demonstrate here that phosphorylation of single, native hippocampal and cloned KCNK2 potassium channels produces reversible interconversion between leak and voltage-dependent phenotypes. The findings reveal a pathway for dynamic regulation of excitability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Native KCNK2 leak pores are reversibly transformed into voltage-dependent channels by PKA-mediated phosphorylation.
Figure 2: Native and cloned KCNK2 channels show the same biophysical properties.
Figure 3: KCNK2 channels have a voltage-dependent phenotype when residue 348 is negatively charged via phosphorylation, mutation or modification.
Figure 4: Voltage-dependent activation of KCNK2 is not sensitive to potassium reversal potential or due to magnesium blockade.

Similar content being viewed by others

References

  1. Goldman, D. E. Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27, 37–60 (1943).

    Article  CAS  Google Scholar 

  2. Hodgkin, A. L. & Katz, B. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108, 37–77 (1949).

    Article  CAS  Google Scholar 

  3. Hodgkin, A. L. & Huxely, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  4. Hille, B. Ionic selectivity of Na and K channels of nerve membranes. Membranes 3, 255–323 (1975).

    CAS  PubMed  Google Scholar 

  5. Adams, D. J., Smith, S. J. & Thompson, S. H. Ionic currents in molluscan soma. Annu. Rev. Neurosci. 3, 141–167 (1980).

    Article  CAS  Google Scholar 

  6. Schmidt, H. & Stampfli, R. The effect of tetraethylammonium chloride on single Ranvier's nodes. Pflugers Arch. Gesamte Physiol. Menschen Tiere 287, 311–325 (1966).

    Article  CAS  Google Scholar 

  7. Hille, B. Potassium channels in myelinated nerve. Selective permeability to small cations. J. Gen. Physiol. 61, 669–686 (1973).

    Article  CAS  Google Scholar 

  8. Baker, M., Bostock, H., Grafe, P. & Martius, P. Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. J. Physiol. (Lond.) 383, 45–67 (1987).

    Article  CAS  Google Scholar 

  9. Chang, D. C. Is the K+ permeability of the resting membrane controlled by the excitable K+ channel? Biophys. J. 50, 1095–1100 (1986).

    Article  CAS  Google Scholar 

  10. Jones, S. W. On the resting potential of isolated frog sympathetic neurons. Neuron 3, 153–161 (1989).

    Article  CAS  Google Scholar 

  11. Backx, P. H. & Marban, E. Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes. Circ. Res. 72, 890–900 (1993).

    Article  CAS  Google Scholar 

  12. Siegelbaum, S. A., Camardo, J. S. & Kandel, E. R. Serotonin & cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature 299, 413–417 (1982).

    Article  CAS  Google Scholar 

  13. Shen, K. Z., North, R. A. & Surprenant, A. Potassium channels opened by noradrenaline and other transmitters in excised membrane patches of guinea-pig submucosal neurones. J. Physiol. (Lond.) 445, 581–599 (1992).

    Article  CAS  Google Scholar 

  14. Buckler, K. J. A novel oxygen-sensitive potassium current in rat carotid body type I cells. J. Physiol.(Lond.) 498, 649–662 (1997).

    Article  CAS  Google Scholar 

  15. Ketchum, K. A., Joiner, W. J., Sellers, A. J., Kaczmarek, L. K. & Goldstein, S. A. N. A new family of outwardly-rectifying potassium channel proteins with two pore domains in tandem. Nature 376, 690–695 (1995).

    Article  CAS  Google Scholar 

  16. Goldstein, S. A. N., Price, L. A., Rosenthal, D. N. & Pausch, M. H. ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93, 13256–13261 (1996).

    Article  CAS  Google Scholar 

  17. Goldstein, S. A. N., Bockenhauer, D., O'Kelly, I. & Zilberberg, N. Potassium leak channels with 2 P domains. Nat. Reviews Neurosci. 2, 175–184 (2001).

    Article  CAS  Google Scholar 

  18. Goldstein, S. A. N., Wang, K. W., Ilan, N. & Pausch, M. Sequence and function of the two P domain potassium channels: implications of an emerging superfamily. J. Molec. Med. 76, 13–20 (1998).

    Article  CAS  Google Scholar 

  19. Patel, A. J. et al. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 17, 4283–4290 (1998).

    Article  CAS  Google Scholar 

  20. Maingret, F. et al. TREK-1 is a heat-activated background K+ channel. EMBO J. 19, 2483–2491 (2000).

    Article  CAS  Google Scholar 

  21. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honore, E. Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275, 10128–10133 (2000).

    Article  CAS  Google Scholar 

  22. Fink, M. et al. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J. 15, 6854–6862 (1996).

    Article  CAS  Google Scholar 

  23. Meadows, H. J. et al. Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel. Eur. J. Physiol. 439, 714–722 (2000).

    Article  CAS  Google Scholar 

  24. Eves, E. M. et al. Immortal rat hippocampal cell lines exhibit neuronal and glial lineages and neurotrophin gene expression. Proc. Natl. Acad. Sci. USA 89, 4373–4377 (1992).

    Article  CAS  Google Scholar 

  25. Zilberberg, N., Ilan, N., Gonzalez-Colaso, R. & Goldstein, S. A. N. Opening and closing of KCNK0 potassium leak channels is tightly-regulated. J. Gen. Physiol. 116, 721–734 (2000).

    Article  CAS  Google Scholar 

  26. Zhou, Y. et al. A dynamically regulated 14-3-3. Slob, and slowpoke potassium channel complex in Drosophila presynaptic nerve terminals. Neuron 22, 809–818 (1999).

    Article  CAS  Google Scholar 

  27. Vandenberg, C. A. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc. Natl. Acad. Sci. USA 84, 2560–2564 (1987).

    Article  CAS  Google Scholar 

  28. Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N. & Jan, L. Y. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364, 802–806 (1993).

    Article  CAS  Google Scholar 

  29. Lopatin, A. N., Makhina, E. N. & Nichols, C. G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372, 366–369 (1994).

    Article  CAS  Google Scholar 

  30. Fakler, B. et al. Strong voltage-dependent inward-rectification of inward-rectifier K+ channels is caused by intracellular spermine. Cell 80, 149–154 (1995).

    Article  CAS  Google Scholar 

  31. Ahmed, A. et al. A molecular target for viral killer toxin: TOK1 potassium channels. Cell 99, 283–291 (1999).

    Article  CAS  Google Scholar 

  32. Vergani, P., Miosga, T., Jarvis, S. M. & Blatt, M. R. Extracellular K+ and Ba2+ mediate voltage-dependent inactivation of the outward-rectifying K+ channel encoded by the yeast gene TOK1. FEBS Lett. 405, 337–344 (1997).

    Article  CAS  Google Scholar 

  33. Vergani, P., Hamilton, D., Jarvis, S. & Blatt, M. R. Mutations in the pore regions of the yeast K+ channel YKC1 affect gating by extracellular K+. EMBO J. 17, 7190–7198 (1998).

    Article  CAS  Google Scholar 

  34. Loukin, S. H. et al. Random mutagenesis reveals a region important for gating of the yeast K+ channel Ykc1. EMBO J. 16, 4817–4825 (1997).

    Article  CAS  Google Scholar 

  35. Loukin, S. H. & Saimi, Y. K+-dependent composite gating of the yeast K+ channel, Tok1. Biophys. J. 77, 3060–3070 (1999).

    Article  CAS  Google Scholar 

  36. Sigworth, F. J. Voltage gating of ion channels. Q. Rev. Biophys. 27, 1–40 (1994).

    Article  CAS  Google Scholar 

  37. Yellen, G. The moving parts of voltage-gated ion channels. Q. Rev. Biophys. 31, 239–295 (1998).

    Article  CAS  Google Scholar 

  38. Bean, B. P. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340, 153–156 (1989).

    Article  CAS  Google Scholar 

  39. Colecraft, H. M., Patil, P. G. & Yue, D. T. Differential occurrence of reluctant openings in G-protein-inhibited N- and P/Q-type calcium channels. J. Gen. Physiol. 115, 175–192 (2000).

    Article  CAS  Google Scholar 

  40. Ilan, N. & Goldstein, S. A. N. KCNK0: single, cloned potassium leak channels are multi-ion pores. Biophys. J. 80, 241–254 (2001).

    Article  CAS  Google Scholar 

  41. McCormick, D. A. & Bal, T. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185–215 (1997).

    Article  CAS  Google Scholar 

  42. Millar, J. A. et al. A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc. Natl. Acad. Sci. USA 97, 3614–3618 (2000).

    Article  CAS  Google Scholar 

  43. Talley, E. M., Lei, Q. B., Sirois, J. E. & Bayliss, D. A. TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25, 399–410 (2000).

    Article  CAS  Google Scholar 

  44. Sirois, J. E., Lei, Q., Talley, E. M., Lynch, C. III & Bayliss, D. A. The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J. Neurosci. 20, 6347–6354 (2000).

    Article  CAS  Google Scholar 

  45. Kim, Y., Bang, H. & Kim, D. TASK-3, a new member of the tandem pore K+ channel family. J. Biol. Chem. 275, 9340–9347 (2000).

    Article  CAS  Google Scholar 

  46. Colquhoun, D. & Sigworth, F. J. in Single-Channel Recording (eds. B. Sakmann & E. Neher) 483–588 (Plenum, New York, 1995).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to S.A.N.G. from the National Institutes of Health. D.B. is supported by the Child Health Research Center (Yale University) and an award from the National Institute of Diabetes and Digestive and Kidney Diseases. We thank F. Sesti and R. Goldstein for discussions and advice during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. N. Goldstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bockenhauer, D., Zilberberg, N. & Goldstein, S. KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel. Nat Neurosci 4, 486–491 (2001). https://doi.org/10.1038/87434

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing