Commentary | Published:

The quest for action potentials in C. elegans neurons hits a plateau

Nature Neuroscience volume 12, pages 377378 (2009) | Download Citation

Subjects

The small size and high resistance of C. elegans neurons makes them sensitive to the random opening of single ion channels, probably rendering codes that are based on classical, all-or-none action potentials unworkable. The recent discovery in C. elegans of a special class of regenerative events known as plateau potentials introduces the possibility of digital neural codes. Such codes would solve the problem of representing information in nervous systems in which action potentials are unreliable.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

  2. 2.

    , , & Neuron 20, 763–772 (1998).

  3. 3.

    , , , & Neuron 31, 617–630 (2001).

  4. 4.

    et al. Neuron 33, 503–514 (2002).

  5. 5.

    , , & J. Membr. Biol. 189, 55–66 (2002).

  6. 6.

    , , & Nat. Neurosci. 11, 865–867 (2008).

  7. 7.

    Curr. Biol. 1, 326–327 (1991).

  8. 8.

    & J. Neurophysiol. 48, 914–937 (1982).

  9. 9.

    & J. Neurosci. 9, 415–425 (1989).

  10. 10.

    & J. Comp. Physiol. [A] 166, 165–177 (1989).

  11. 11.

    , & J. Comp. Neurol. 284, 374–388 (1989).

  12. 12.

    & Parasitology 108, 81–87 (1994).

  13. 13.

    & J. Comp. Physiol. [A] 171, 17–28 (1992).

  14. 14.

    & J. Neurosci. 27, 6531–6541 (2007).

  15. 15.

    , & J. Neurophysiol. 87, 1175–1185 (2002).

  16. 16.

    , , & J. Neurophysiol. 92, 255–264 (2004).

  17. 17.

    , & Eur. J. Neurosci. 18, 258–266 (2003).

  18. 18.

    , , & J. Neurophysiol. 80, 2718–2726 (1998).

  19. 19.

    & J. Neurophysiol. 74, 1929–1937 (1995).

  20. 20.

    , & J. Neurophysiol. 93, 1949–1958 (2005).

  21. 21.

    , , & J. Physiol. (Lond.) 563, 583–596 (2005).

  22. 22.

    & J. Neurophysiol. 76, 1491–1502 (1996).

  23. 23.

    , , & Science 278, 1122–1125 (1997).

  24. 24.

    , , , & J. Neurophysiol. 87, 2307–2323 (2002).

  25. 25.

    , , & J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 191, 1–11 (2004).

  26. 26.

    & Brain Res. 485, 391–395 (1989).

  27. 27.

    & Biophys. J. 60, 1132–1146 (1991).

  28. 28.

    Genetics 124, 855–872 (1990).

  29. 29.

    , & Nature 378, 82–85 (1995).

  30. 30.

    Curr. Biol. 14, R617–R618 (2004).

  31. 31.

    et al. Nature 450, 63–70 (2007).

  32. 32.

    et al. Nature 454, 114–117 (2008).

  33. 33.

    , & Nat. Neurosci. 8, 43–50 (2005).

  34. 34.

    , & Nat Neurosci. 11, 908–915 (2008).

  35. 35.

    & Neural Comput. 5, 843–855 (1993).

  36. 36.

    , & Curr. Biol. 15, 1143–1149 (2005).

  37. 37.

    & PLoS Comput. Biol. 3, e79 (2007).

  38. 38.

    & C. elegans Atlas (Cold Spring Harbor Press, Woodbury, New York, 2008).

  39. 39.

    Science 282, 2028–2033 (1998).

  40. 40.

    , & Nat. Methods 4, 727–731 (2007).

Download references

Author information

Affiliations

  1. Shawn R Lockery is at the Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA. shawn@uoregon.edu

    • Shawn R Lockery
  2. Miriam B Goodman is in the Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA.

    • Miriam B Goodman

Authors

  1. Search for Shawn R Lockery in:

  2. Search for Miriam B Goodman in:

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nn0409-377

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing