Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Casein kinase–II regulates NMDA channel function in hippocampal neurons

Abstract

Several second–messenger–regulated protein kinases have been implicated in the regulation of N–methyl–D–aspartate (NMDA) channel function. Yet the role of calcium and cyclic–nucleotide–independent kinases, such as casein kinase II (CKII), has remained unexplored. Here we identify CKII as an endogenous Ser/Thr protein kinase that potently regulates NMDA channel function and mediates intracellular actions of spermine on the channel. The activity of NMDA channels in cell–attached and inside–out recordings was enhanced by CKII or spermine and was decreased by selective inhibition of CKII. In hippocampal slices, inhibitors of CKII reduced synaptic transmission mediated by NMDA but not AMPA receptors. The dependence of NMDA receptor channel activity on tonically active CKII thus permits changes in intracellular spermine levels or phosphatase activities to effectively control channel function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of CaMKII and CKII inhibitors on NMDA channel function in cell–attached patches.
Figure 2: Extracellular spermine increases NMDA channel activity in cell–attached patches.
Figure 3: The effects of activation or inhibition of CKII on NMDA channel activity recorded in inside–out patches.
Figure 4: Inhibition of CKII selectively reduces the NMDA component of synaptic transmission in the dentate gyrus.

Similar content being viewed by others

References

  1. Roche, K. W., Tingley, W. G. & Huganir, R. L. Glutamate receptor phosphorylation and synaptic plasticity. Curr. Opin. Neurobiol. 4, 383–388 (1994).

    Article  CAS  Google Scholar 

  2. Moss, S. J. & Smart, T. G. Modulation of amino acid–gated ion channels by protein phosphorylation. Int. Rev. Neurobiol. 39, 1–52 (1996).

    Article  CAS  Google Scholar 

  3. Lieberman, D. N. & Mody, I. Regulation of NMDA channel function by endogenous Ca2+– dependent phosphatase. Nature 369, 235–239 (1994).

    Article  CAS  Google Scholar 

  4. Tong, G., Shepherd, D. & Jahr, C. E. Synaptic desensitization of NMDA receptors by calcineurin. Science 267, 1510–1512 (1995).

    Article  CAS  Google Scholar 

  5. Chen, L. & Huang, L. Y. Protein kinase C reduces Mg2+ block of NMDA–receptor channels as a mechanism of modulation. Nature 356, 521–523 (1992).

    Article  CAS  Google Scholar 

  6. Durand, G. M., Bennett, M. V. L. & Zukin, R. S. Splice variants of the N–methyl–D–aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. Proc. Natl. Acad. Sci. USA 90, 6731–6735 (1993).

    Article  CAS  Google Scholar 

  7. Greengard, P., Jen, J., Nairn, A. C. & Stevens, C. F. Enhancement of the glutamate response by cAMP dependent protein kinase in hippocampal neurons. Science 253, 1135–1138 (1991).

    Article  CAS  Google Scholar 

  8. Raman, I. M., Tong, G. & Jahr, C. E. β–adrenergic regulation of synaptic NMDA receptors by cAMP– dependent protein kinase. Neuron 16, 415–421 (1996).

    Article  CAS  Google Scholar 

  9. Lu, Y. M., Roder, J. C., Davidow, J. & Salter, M. W. Src activation in the induction of long–term potentiation in CA1 hippocampal neurons. Science 279, 1363–1367 (1998).

    Article  CAS  Google Scholar 

  10. Kolaj, M., Cerne, R., Cheng, G., Brickey, D. A. & Randic, M. Alpha subunit of calcium/calmodulin–dependent protein kinase enhances excitatory amino acid and synaptic responses of rat spinal dorsal horn neurons. J. Neurophysiol. 72, 2525–2531 (1994).

    Article  CAS  Google Scholar 

  11. Omkumar, R. V., Kiely, M. J., Rosenstein, A. J., Min, K. T. & Kennedy, M. B. Identification of a phosphorylation site for calcium/calmodulindependent protein kinase II in the NR2B subunit of the N–methyl–D–aspartate receptor. J. Biol. Chem. 271, 31670–31678 (1996).

    Article  CAS  Google Scholar 

  12. Goto, S. et al. Cellular colocalization of calcium/calmodulin–dependent protein kinase II and calcineurin in the rat cerebral cortex and hippocampus. Neurosci. Lett. 149, 189–192 (1993).

    Article  CAS  Google Scholar 

  13. Ishikawa, N., Hashiba, Y. & Hidaka, H. Effect of a new Ca2+–calmodulin–dependent protein kinase II inhibitor on GABA release in cerebrospinal fluid of the rat. J. Pharmacol. Exp. Ther. 254, 598–602 (1990).

    CAS  PubMed  Google Scholar 

  14. Li, G., Hidaka, H. & Wollheim, C. B. Inhibition of voltage–gated Ca2+ channels and insulin secretion in HIT cells by the Ca2+/calmodulin–dependent protein kinase II inhibitor KN–62: comparison with antagonists of calmodulin and L– type Ca2+ channels. Mol. Pharmacol. 42, 489–488 (1992).

    CAS  PubMed  Google Scholar 

  15. Pinna, L. A. Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim. Biophys. Acta 1054, 267–284 (1990).

    Article  CAS  Google Scholar 

  16. Tuazon, P. T. & Traugh, J. A. Casein kinase I and II—multipotential serine protein kinases: structure, function, and regulation. Adv. Second Messenger Phosphoprotein Res. 23, 123–164 (1991).

    CAS  PubMed  Google Scholar 

  17. Girault, J. A., Hemmings, H. C. J., Zorn, S. H., Gustafson, E. L. & Greengard, P. Characterization in mammalian brain of a DARPP–32 serine kinase identical to casein kinase II. J. Neurochem. 55, 1772–1783 (1990).

    Article  CAS  Google Scholar 

  18. Krek, W., Maridor, G. & Nigg, E. A. Casein kinase II is a predominantly nuclear enzyme. J. Cell Biol. 116, 43–55 (1992).

    Article  CAS  Google Scholar 

  19. Zandomeni, R. & Weinmann, R. Inhibitory effect of 5,6–dichloro–1–beta–D–ribofuranosylbenzimidazole on a protein kinase. J. Biol. Chem. 259, 14804–14811 (1984).

    CAS  PubMed  Google Scholar 

  20. Zandomeni, R., Zandomeni, M. C., Shugar, D. & Weinmann, R. Casein kinase type II is involved in the inhibition by 5,6–dichloro–1–beta–D–ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J. Biol. Chem. 261, 3414–3419 (1986).

    CAS  PubMed  Google Scholar 

  21. Williams, K., Romano, C. & Molinoff, P. B. Effects of polyamines on the binding of [3H]MK–801 to the N– methyl–D–aspartate receptor: pharmacological evidence for the existence of a polyamine recognition site. Mol. Pharmacol. 36, 575–581 (1989).

    CAS  PubMed  Google Scholar 

  22. Lerma, J. Spermine regulates N–methyl–D–aspartate receptor desensitization. Neuron 8, 343–352 (1992).

    Article  CAS  Google Scholar 

  23. Benveniste, M. & Mayer, M. L. Multiple effects of spermine on N–methyl–D–aspartic acid receptor responses of rat cultured hippocampal neurones. J. Physiol. (Lond.) 464, 131–163 (1993).

    Article  CAS  Google Scholar 

  24. Traynelis, S. F., Hartley, M. & Heinemann, S. F. Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268, 873–876 (1995).

    Article  CAS  Google Scholar 

  25. Shaw, G. G. & Pateman, A. J. The regional distribution of the polyamines spermidine and spermine in brain. J. Neurochem. 20, 1225–1230 (1973).

    Article  CAS  Google Scholar 

  26. Harman, R. J. & Shaw, G. G. High–affinity uptake of spermine by slices of rat cerebral cortex. J. Neurochem. 36, 1609–1615 (1981).

    Article  CAS  Google Scholar 

  27. Gilad, G. M. & Gilad, V. H. Polyamine uptake, binding and release in rat brain. Eur. J. Pharmacol. 193, 41–46 (1991).

    Article  CAS  Google Scholar 

  28. Bähring, R., Bowie, D., Benveniste, M. & Mayer, M. L. Permeation and block of rat GluR6 glutamate receptor channels by internal and external polyamines. J. Physiol. (Lond.) 502, 575–589 (1997).

    Article  Google Scholar 

  29. Critchfield, J. W., Coligan, J. E., Folks, T. M. & Butera, S. T. Casein kinase II is a selective target of HIV 1 transcriptional inhibitors. Proc. Natl. Acad. Sci. USA. 94, 6110–6115 (1997).

    Article  CAS  Google Scholar 

  30. Lopatin, A. N., Makhina, E. N. & Nichols, C. G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372, 366–369 (1994).

    Article  CAS  Google Scholar 

  31. Bowie, D. & Mayer, M. L. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine–mediated ion channel block. Neuron 15, 453–462 (1995).

    Article  CAS  Google Scholar 

  32. Kamboj, S. K., Swanson, G. T. & Cull–Candy, S. G. Intracellular spermine confers rectification on rat calcium–permeable AMPA and kainate receptors. J. Physiol. (Lond.) 486, 297–303 (1995).

    Article  CAS  Google Scholar 

  33. Herman, M. D., Reuveny, E. & Narahashi, T. The effect of polyamines on voltage–activated calcium channels in mouse neuroblastoma cells. J. Physiol. (Lond.) 462, 645–660 (1993).

    Article  CAS  Google Scholar 

  34. Ye, C., Kanazirska, M., Quinn, S., Brown, E. M. & Vassilev, P. M. Modulation by polycationic Ca(2+)–sensing receptor agonists of nonselective cation channels in rat hippocampal neurons. Biochem. Biophys. Res. Commun. 224, 271–280 (1996).

    Article  CAS  Google Scholar 

  35. Willuweit, B. & Aktories, K. Heparin uncouples alpha 2–adrenoceptors from the Gi–protein in membranes of human platelets. Biochem. J. 249, 857–863 (1988).

    Article  CAS  Google Scholar 

  36. Ehrlich, B. E., Kaftan, E., Bezprozvannaya, S. & Bezprozvanny, I. The pharmacology of intracellular Ca2+–release channels. Trends Pharmacol. Sci. 15, 145–149 (1994).

    Article  CAS  Google Scholar 

  37. Sokabe, M. & Sachs, F. The structure and dynamics of patch–clamped membranes: a study using differential interference contrast light microscopy. J. Cell Biol. 111, 599–606 (1990).

    Article  CAS  Google Scholar 

  38. Nguyen, P. V., Abel, T. & Kandel, E. R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107 (1994).

    Article  CAS  Google Scholar 

  39. Apel, E. D., Litchfield, D. W., Clark, R. H., Krebs, E. G. & Storm, D. R. Phosphorylation of neuromodulin (GAP–43) by casein kinase II. Identification of phosphorylation sites and regulation by calmodulin. (Au: is this title correct?). J. Biol. Chem. 266, 10544–10551 (1991).

    CAS  PubMed  Google Scholar 

  40. Bennett, M. K., Miller, K. G. & Scheller, R. H. Casein kinase II phosphorylates the synaptic vesicle protein p65. J. Neurosci. 13, 1701–1707 (1993).

    Article  CAS  Google Scholar 

  41. Gilad, G. M., Gilad, V. H. & Wyatt, R. J. Accumulation of exogenous polyamines in gerbil brain after ischemia. Mol. Chem. Neuropathol. 18, 197–210 (1993).

    Article  CAS  Google Scholar 

  42. Johnson, T. D. Polyamines and cerebral ischemia. Prog. Drug Res. 50, 193–258 (1998).

    Article  CAS  Google Scholar 

  43. Sacks, D. B. et al. Phosphorylation by casein kinase II alters the biological activity of calmodulin. Biochem. J. 283, 21–24 (1992).

    Article  CAS  Google Scholar 

  44. Ehlers, M. D., Zhang, S., Bernhardt, J. P. & Huganir, R. L. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit Cell 84, 745–755 (1996).

    Article  CAS  Google Scholar 

  45. Charriaut–Marlangue, C., Otani, S., Creuzet, C., Ben–Ari, Y. & Loeb, J. Rapid activation of hippocampal casein kinase II during long– term potentiation. Proc. Natl. Acad. Sci.USA. 88, 10232–10236 (1991).

    Article  Google Scholar 

  46. Blanquet, P. R. Neurotrophin–induced activation of casein kinase 2 in rat hippocampal slices. Neuroscience 86, 739–749 (1998).

    Article  CAS  Google Scholar 

  47. Barroga, C. F., Stevenson, J. K., Schwarz, E. M. & Verma, I. M. Constitutive phosphorylation of I kappa B alpha by casein kinase II. Proc. Natl. Acad. Sci. USA. 92, 7637–7641 (1995).

    Article  CAS  Google Scholar 

  48. Hübner, S., Xiao, C. Y. & Jans, D. A. The protein kinase CK2 site (Ser111/112) enhances recognition of the simian virus 40 large T–antigen nuclear localization sequence by importin. J. Biol. Chem. 272, 17191–17195 (1997).

    Article  Google Scholar 

  49. Kaltschmidt, C., Kaltschmidt, B. & Baeuerle, P. A. Stimulation of ionotropic glutamate receptors activates transcription factor NF–kappa B in primary neurons. Proc. Natl. Acad. Sci. USA. 92, 9618–9622 (1995).

    Article  CAS  Google Scholar 

  50. Köhr, G., De Koninck, Y. & Mody, I. Properties of NMDA receptor channels in neurons acutely isolated from epileptic (kindled) rats. J. Neurosci. 13, 3612–3627 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jolinda Traugh for the gift of purified CKII, for the sharing of her biochemical findings, and for her comments on the manuscript. We thank Walter Pyerin for reviewing an earlier version of the manuscript, Georg Köhr for his early work with phorbol esters on NMDA channels and Brian Oyama for technical assistance. This work was supported by a Howard Hughes predoctoral fellowship to D.N.L and by the NINDS grant NS 27528 and the Coelho Endowment to I.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Lieberman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieberman, D., Mody, I. Casein kinase–II regulates NMDA channel function in hippocampal neurons. Nat Neurosci 2, 125–132 (1999). https://doi.org/10.1038/5680

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5680

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing