Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1

Abstract

The expansion of an unstable CAG repeat causes spinocerebellar ataxia type 1 (SCA1) and several other neurodegenerative diseases. How polyglutamine expansions render the resulting proteins toxic to neurons, however, remains elusive. Hypothesizing that long polyglutamine tracts alter gene expression, we found certain neuronal genes involved in signal transduction and calcium homeostasis sequentially downregulated in SCA1 mice. These genes were abundant in Purkinje cells, the primary site of SCA1 pathogenesis; moreover, their downregulation was mediated by expanded ataxin-1 and occured before detectable pathology. Similar downregulation occurred in SCA1 human tissues. Altered gene expression may be the earliest mediator of polyglutamine toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PCCMT expression was specifically reduced in SCA1 mice.
Figure 2: PCCMT mRNA expression in mouse and human brain.
Figure 3: IP3R1 and SERCA2 expression is reduced in SCA1 mice and patient brain tissues.
Figure 4: Downregulation of type 1 inositol polyphosphate 5-phosphatase, TRP3 and EAAT4 in SCA1 mice.
Figure 5: Mutant ataxin-1 does not affect expression of all Purkinje cell-specific genes.
Figure 6: Upregulation of EB22/4, a mouse homolog of human α1-ACT.

Similar content being viewed by others

References

  1. Zoghbi, H. Y. & Orr, H. T. Spinocerebellar ataxia type 1. Seminars in Cell Biology: Unstable Repeat Diseases Vol. 6, 29–35 (Saunders, Philadelphia, 1995 ).

    Article  Google Scholar 

  2. Matilla, A. et al. Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J. Neurosci. 18, 5508–5516 (1998).

    Article  CAS  Google Scholar 

  3. Burright, E. N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82, 937–948 (1995).

    Article  CAS  Google Scholar 

  4. Clark, H. B. et al. Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and histological alterations. J. Neurosci. 17, 7385–7395 (1997).

    Article  CAS  Google Scholar 

  5. Skinner, P. J. et al. Ataxin-1 with extra glutamines induces alterations in nuclear matrix-associated structures. Nature 389, 971–974 (1997).

    Article  CAS  Google Scholar 

  6. Klement, I. A. et al. Ataxin-1 nuclear localization and aggregation: Role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53 (1998).

    Article  CAS  Google Scholar 

  7. Dai, Q. et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem. 273, 15030– 15034 (1998).

    Article  CAS  Google Scholar 

  8. Imai, Y., Davey, J., Kawagishi-Kobayashi, M. & Yamamoto, M. Genes encoding farnesyl cysteine carboxyl methyltransferase in Schizosaccharomyces pombe and Xenopus laevis. Mol. Cell. Biol. 17, 1543–1551 (1997).

    Article  CAS  Google Scholar 

  9. Mitchell, C. A., Brown, S., Campbell, J. K., Munday, A. D. & Speed, C. J. Regulation of second messengers by the inositol polyphosphate 5-phosphatases. Biochem. Soc. Trans. 24, 994–1000 ( 1996).

    Article  CAS  Google Scholar 

  10. Mori, Y. et al. Differential distribution of TRP Ca2+ channel isoforms in mouse brain. Neuroreport 9, 507–515 (1998).

    CAS  PubMed  Google Scholar 

  11. Yamada, K. et al. EAAT4 is a post-synaptic glutamate transporter at Purkinje cell synapses. Neuroreport 7, 2013– 2017 (1996).

    Article  CAS  Google Scholar 

  12. Mailleux, P., Takazawa, K., Erneux, C. & Vanderhaeghen, J. J. Comparison of neuronal inositol 1,4,5-trisphosphate 3-kinase and receptor mRNA distributions in the adult rat brain using in situ hybridization histochemistry. Neuroscience 49, 577–590 (1992).

    Article  CAS  Google Scholar 

  13. Kotera, J. et al. Expression of rat cGMP-binding cGMP-specific phosphodiesterase mRNA in Purkinje cell layers during postnatal neuronal development. Eur. J. Biochem. 249, 434–442 (1997).

    Article  CAS  Google Scholar 

  14. Roustan, P. et al. The rat phospholipase C beta 4 gene is expressed at high abundance in cerebellar Purkinje cells. Neuroreport 6, 1837–1841 (1995).

    Article  CAS  Google Scholar 

  15. Inglis, J. D., Lee, M., Davidson, D. R. & Hill, R. E. Isolation of two cDNAs encoding novel alpha 1-antichymotrypsin-like proteins in a murine chondrocytic cell line. Gene 106, 213– 220 (1991).

    Article  CAS  Google Scholar 

  16. Akaaboune, M., Ma, J., Festoff, B. W., Greenberg, B. D. & Hantai, D. Neurotrophic regulation of mouse muscle beta-amyloid protein precursor and alpha 1-antichymotrypsin as revealed by axotomy. J. Neurobiol. 25, 503–514 (1994).

    Article  CAS  Google Scholar 

  17. Jiang, Y. H. et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation . Neuron 21, 799–811 (1998).

    Article  CAS  Google Scholar 

  18. Abraham, C. R., Selkoe, D. J. & Potter, H. Immunochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer's disease. Cell 52, 487–501 (1988).

    Article  CAS  Google Scholar 

  19. Das, S. & Potter, H. Expression of the Alzheimer amyloid-promoting factor antichymotrypsin is induced in human astrocytes by IL-1. Neuron 14, 447–456 ( 1995).

    Article  CAS  Google Scholar 

  20. Koo, E. H., Abraham, C. R., Potter, H., Cork, L. C. & Price, D. L. Developmental expression of alpha 1-antichymotrypsin in brain may be related to astrogliosis. Neurobiol. Aging 12, 495–501 ( 1991).

    Article  CAS  Google Scholar 

  21. Tanaka, J., Ichikawa, R., Watanabe, M., Tanaka, K. & Inoue, Y. Extra-junctional localization of glutamate transporter EAAT4 at excitatory Purkinje cell synapses. Neuroreport 8, 2461–2464 ( 1997).

    Article  CAS  Google Scholar 

  22. Birnbaumer, L. et al. On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc. Natl. Acad. Sci. USA 93, 15195–15202 ( 1996).

    Article  CAS  Google Scholar 

  23. Zhu, X. et al. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85, 661–671 (1996).

    Article  CAS  Google Scholar 

  24. Drayer, A. L. et al. The family of inositol and phosphatidylinositol polyphosphate 5-phosphatases. Biochem. Soc. Trans. 24, 1001–1005 (1996).

    Article  CAS  Google Scholar 

  25. Woscholski, R. & Parker, P. J. Inositol lipid 5-phosphatases—traffic signals and signal traffic. Trends Biochem. Sci. 22, 427–431 (1997).

    Article  CAS  Google Scholar 

  26. De Smedt, F., Verjans, B., Mailleux, P. & Erneux, C. Cloning and expression of human brain type I inositol 1,4,5-trisphosphate 5-phosphatase. High levels of mRNA in cerebellar Purkinje cells. FEBS Lett. 347, 69–72 ( 1994).

    Article  CAS  Google Scholar 

  27. Takei, K., et al. Ca2+ stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3 receptor, Ca2+-ATPase, and calsequestrin. J. Neurosci. 12, 489–505 (1992).

    Article  CAS  Google Scholar 

  28. Villa, A. et al. The endoplasmic reticulum of Purkinje neuron body and dendrites: molecular identity and specializations for Ca2+ transport. Neuroscience 49, 467–477 (1992).

    Article  CAS  Google Scholar 

  29. Volpe, P., Nori, A., Martini, A., Sacchetto, R. & Villa, A. Multiple/heterogeneous Ca2+ stores in cerebellum Purkinje neurons. Comp. Biochem. Physiol. Comp. Physiol. 105, 205–211 ( 1993).

    Article  CAS  Google Scholar 

  30. Matsumoto, M. et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature 379, 168–171 (1996).

    Article  CAS  Google Scholar 

  31. Street, V. A. et al. The type 1 inositol 1,4,5-trisphosphate receptor gene is altered in the opisthotonos mouse. J. Neurosci. 17, 635–645 (1997).

    Article  CAS  Google Scholar 

  32. Miller, K. K., Verma, A., Snyder, S. H. & Ross, C. A. Localization of an endoplasmic reticulum calcium ATPase mRNA in rat brain by in situ hybridization . Neuroscience 43, 1–9 (1991).

    Article  CAS  Google Scholar 

  33. Nakanishi, S., Maeda, N. & Mikoshiba, K. Immunohistochemical localization of an inositol 1,4,5-trisphosphate receptor, P400, in neural tissue: studies in developing and adult mouse brain . J. Neurosci. 11, 2075– 2086 (1991).

    Article  CAS  Google Scholar 

  34. Ross, C. A., Danoff, S. K., Schell, M. J., Snyder, S. H. & Ullrich, A. Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. Proc. Natl. Acad. Sci. USA 89, 4265–4269 (1992).

    Article  CAS  Google Scholar 

  35. Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13 –26 (1998).

    Article  CAS  Google Scholar 

  36. Verkhratsky, A. & Toescu, E. C. Calcium and neuronal aging. Trends Neurosci. 21, 2– 7 (1998).

    Article  CAS  Google Scholar 

  37. Liu, B. F., Xu, X., Fridman, R., Muallem, S. & Kuo, T. H. Consequences of functional expression of the plasma membrane Ca2+pump isoform 1a. J. Biol. Chem. 271, 5536–5544 (1996).

    Article  CAS  Google Scholar 

  38. Rando, R. R. Chemical biology of protein isoprenylation/methylation. Biochim. Biophys. Acta 1300, 5–16 (1996).

    Article  Google Scholar 

  39. Clarke, S. Protein isoprenylation and methylation at carboxyl-terminal cysteine residues . Annu. Rev. Biochem. 61, 355– 386 (1992).

    Article  CAS  Google Scholar 

  40. Hrycyna, C. A. & Clarke, S. Modification of eukaryotic signaling proteins by C-terminal methylation reactions. Pharmacol. Ther. 59, 281–300 (1993).

    Article  CAS  Google Scholar 

  41. Choy, E., et al. Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98, 69– 80 (1999).

    Article  CAS  Google Scholar 

  42. Cummings, C. J. et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19, 148–154 ( 1998).

    Article  CAS  Google Scholar 

  43. Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21 (1994).

    Article  CAS  Google Scholar 

  44. Masuyama, H. & MacDonald, P. N. Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. J. Cell. Biochem. 71, 429–440 (1998).

    Article  CAS  Google Scholar 

  45. Nawaz, Z., Lonard, D. M., Dennis, A. P., Smith, C. L. & O'Malley, B. W. Proteasome-dependent degradation of the human estrogen receptor. Proc. Natl. Acad. Sci. USA 96, 1858–1862 (1999).

    Article  CAS  Google Scholar 

  46. Zhang, J., Guenther, M. G., Carthew, R. W. & Lazar, M. A. Proteasomal regulation of nuclear receptor corepressor-mediated repression . Genes Dev. 12, 1775–1780 (1998).

    Article  CAS  Google Scholar 

  47. Doucas, V., Tini, M., Egan, D. A. & Evans, R. M. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc. Natl. Acad . Sci. USA 96, 2627–2632 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Beaudet for providing the Ube3a null mice, M. Philips at New York University School of Medicine and K. Tanaka at the National Institute of Neuroscience in Japan for providing the anti-PCCMT and anti-EAAT4 antibodies, H. J. Bellen for reading the manuscript and V. Brandt for comments. This work was supported by grants NS27699 and NS22920 from the National Institutes of Health (to H.Y.Z. and H.T.O.) and by the core facilities of the Baylor College of Medicine Mental Retardation Research Center. X. Lin is an Associate and H. Zoghbi an Investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huda Y. Zoghbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, X., Antalffy, B., Kang, D. et al. Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 3, 157–163 (2000). https://doi.org/10.1038/72101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing