Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A metabotropic glutamate receptor variant functions as a taste receptor

Abstract

Sensory transduction for many taste stimuli such as sugars, some bitter compounds and amino acids is thought to be mediated via G protein-coupled receptors (GPCRs), although no such receptors that respond to taste stimuli are yet identified. Monosodium L-glutamate (l-MSG), a natural component of many foods, is an important gustatory stimulus believed to signal dietary protein. We describe a GPCR cloned from rat taste buds and functionally expressed in CHO cells. The receptor couples negatively to a cAMP cascade and shows an unusual concentration–response relationship. The similarity of its properties to MSG taste suggests that this receptor is a taste receptor for glutamate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The 5′ end of mGluR4 cDNA from taste papillae contains novel sequence derived from an intron.
Figure 2: The truncated mRNA in taste papillae is a mature mRNA.
Figure 3: Taste-mGluR4 is activated by glutamate at much higher concentrations than brain-mGluR4.
Figure 4: Taste-mGluR4 is activated by L-AP4 at higher concentrations than is brain-mGluR4.

References

  1. 1

    Lindemann, B. Taste reception. Physiol. Rev. 76, 719– 766 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Lindemann, B. Receptor seeks ligand: on the way to cloning the molecular receptors for sweet and bitter taste. Nat. Med. 5, 381– 382 (1999).

    CAS  Article  Google Scholar 

  3. 3

    McLaughlin, S. K., McKinnon, P. J. & Margolskee, R. F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357, 563–569 (1992).

    CAS  Article  Google Scholar 

  4. 4

    McLaughlin, S. K., McKinnon, P. J., Spickofsky, N., Danho, W. & Margolskee, R. F. Molecular cloning of G proteins and phosphodiesterases from rat taste cells. Physiol. Behav. 56, 1157–1164 (1994).

    CAS  Article  Google Scholar 

  5. 5

    Kusakabe, Y., Abe, K., Tanemura, K., Emori, Y. & Arai, S. GUST27 and closely related G-protein-coupled receptors are localized in taste buds together with Gi-protein α-subunit. Chem. Senses 21, 335–340 ( 1996).

    CAS  Article  Google Scholar 

  6. 6

    Kusakabe, Y. et al. Identification of two alpha-subunit species of GTP-binding proteins, Ga15 and Gaq, expressed in rat taste buds. Biochim. Biophys. Acta 1403, 265–272 ( 1998).

    CAS  Article  Google Scholar 

  7. 7

    Huang, L. et al. Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat. Neurosci. 2, 1055–1062 ( 1999).

    CAS  Article  Google Scholar 

  8. 8

    Misaka, T. et al. Taste buds have a cyclic nucleotide-activated channel, CNGgust . J. Biol. Chem. 272, 22623– 22629 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Kretz, O., Barbry, P., Bock, R. & Lindemann, B. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J. Histochem. Cytochem. 47, 51–64 ( 1999).

    CAS  Article  Google Scholar 

  10. 10

    Lin, W., Finger, T. E., Rossier, B. C. & Kinnamon, S. C. Epithelial Na+ channel subunits in rat taste cells: localization and regulation by aldosterone. J. Comp. Neurol. 405 , 406–420 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Ogawa, S. et al. Receptor that leaves a sour taste in the mouth. Nature 395, 555–556 ( 1998).

    Article  Google Scholar 

  12. 12

    Ming, D., Ruiz-Avila, L. & Margolskee, R. F. Characterization and solubilization of bitter-responsive receptors that couple to gustducin. Proc. Natl. Acad. Sci. USA 95, 8933–8938 ( 1998).

    CAS  Article  Google Scholar 

  13. 13

    Matsuoka, I., Mori, T., Aoki, J., Sato, T. & Kurihara, K. Identification of novel members of G-protein coupled receptor superfamily expressed in bovine taste tissue. Biochem. Biophys. Res. Commun. 194, 504–511 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Abe, K., Kusakabe, Y., Tanemura, K., Emori, Y. & Arai, S. Primary structure and cell-type specific expression of a gustatory G protein-coupled receptor related to olfactory receptors. J. Biol. Chem. 268, 12033– 12039 (1993).

    CAS  PubMed  Google Scholar 

  15. 15

    Hoon, M. A. et al. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96 , 541–551 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Faurion, A. Are umami taste receptor sites structurally related to glutamate CNS receptor sites? Physiol. Behav. 49, 905– 912 (1991).

    CAS  Article  Google Scholar 

  17. 17

    Chaudhari, N. et al. The taste of monosodium glutamate: Membrane receptors in taste buds. J. Neurosci. 16, 3817– 3826 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Hayashi, Y., Zviman, M. M., Brand, J. G., Teeter, J. H. & Restrepo, D. Measurement of membrane potential and [Ca2+]i in cell ensembles: Application to the study of glutamate taste in mice. Biophys. J. 71, 1057–1070 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Conn, P. J. & Pin, J. P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37, 205–237 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Chaudhari, N. & Roper, S. D. Molecular and physiological evidence for glutamate (umami) taste transduction via a G protein-coupled receptor . Ann. NY Acad. Sci. 855, 398– 406 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Yang, H., Wanner, I. B., Roper, S. D. & Chaudhari, N. An optimized method for in situ hybridization with signal amplification that allows the detection of rare mRNAs. J. Histochem. Cytochem. 47 431–446 ( 1999).

    CAS  Article  Google Scholar 

  22. 22

    Kurihara, K. & Kashiwayanagi, M. Introductory remarks on umami taste. Ann. NY Acad. Sci. 855, 393– 397 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Sako, N. & Yamamoto, T. Analyses of taste nerve responses with special reference to possible receptor mechanisms of umami taste in the rat. Neurosci. Lett. 261, 109– 112 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Delay, E. R. et al. Taste preference synergism between glutamate receptor ligands and IMP in rats. Chem. Senses (in press).

  25. 25

    Lin, W. & Kinnamon, S.C. Physiological evidence for ionotropic and metabotropic glutamate receptors in rat taste cells. J. Neurophysiol. 82, 2061–2069 ( 1999).

    CAS  Article  Google Scholar 

  26. 26

    Ninomiya, Y., Tanikukai, T., Yoshida, S., Funakoshi, M. & Tanimukai, T. Gustatory neural responses in preweanling mice. Physiol. Behav. 49, 913 –918 (1991).

    CAS  Article  Google Scholar 

  27. 27

    Yamamoto, T. et al. Electrophysiological and behavioural studies on the taste of umami substances in the rat. Physiol. Behav. 49, 919–925 (1991).

    CAS  Article  Google Scholar 

  28. 28

    Monastyrskaia, K. et al. Effect of the umami peptides on the ligand binding and function of rat mGlu4a receptor might implicate this receptor in the monosodium glutamate taste transduction. Br. J. Pharmacol. 128 , 1027–1034 (1999).

    CAS  Article  Google Scholar 

  29. 29

    O'Hara, P. J. et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11, 41–52 (1993).

    CAS  Article  Google Scholar 

  30. 30

    Han, G. & Hampson, D. R. Ligand binding to the amino-terminal domain of the mGluR4 subtype of metabotropic glutamate receptor. J. Biol. Chem. 274, 10008–10013 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Takahashi, K., Tsuchida, K., Tanabe, Y., Masu, M. & Nakanishi, S. Role of the large extracellular domain of metabotropic glutamate receptors in agonist selectivity determination. J. Biol. Chem. 268, 19341–19345 ( 1993).

    CAS  PubMed  Google Scholar 

  32. 32

    Thomsen, C. et al. Cloning and characterization of a metabotropic glutamate receptor, mGluR4b. Neuropharmacology 36, 21– 30 (1997).

    CAS  Article  Google Scholar 

  33. 33

    Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R. & Nakanishi, S. A family of metabotropic glutamate receptors. Neuron 8, 169–179 ( 1992).

    CAS  Article  Google Scholar 

  34. 34

    Bradley, S. R., Levey, A. I., Hersch, S. M. & Conn, P. J. Immunocytochemical localization of group III metabotropic glutamate receptors in the hippocampus with subtype-specific antibodies. J. Neurosci. 16, 2044–2056 ( 1996).

    CAS  Article  Google Scholar 

  35. 35

    Tanabe, Y. et al. Signal transduction, pharmacological properties and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci. 13, 1372–1378 (1993).

    CAS  Article  Google Scholar 

  36. 36

    Hettinger, T. P., Frank, M. E. & Myers, W. E. Are the tastes of polycose and monosodium glutamate unique? Chem. Senses 21, 341– 347 (1996).

    CAS  Article  Google Scholar 

  37. 37

    Rifkin, B. & Bartoshuk, L.M. Taste synergism between monosodium glutamate and disodium 5′-guanylate. Physiol. Behav. 24, 1169–1172 (1980).

    CAS  Article  Google Scholar 

  38. 38

    Torii, K. & Cagan, R. H. Biochemical studies of taste sensation. IX. Enhancement of L-[3H]glutamate binding to bovine taste papillae by 5′-ribonucleotides. Biochim. Biophys. Acta 627, 313–323 (1980).

    CAS  Article  Google Scholar 

  39. 39

    Caicedo, A., Kim, K. & Roper, S. Glutamate-induced cobalt uptake reveals non-NMDA receptors in rat taste cells . J. Comp. Neurol. (in press).

  40. 40

    Bigiani, A., Delay, R. J., Chaudhari, N., Kinnamon, S. C. & Roper, S. D. Responses to glutamate in rat taste cells. J. Neurophysiol. 77, 3048– 3059 (1997).

    CAS  Article  Google Scholar 

  41. 41

    Pin, J. P. & Duvoisin, R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34, 1–26 (1995).

    CAS  Article  Google Scholar 

  42. 42

    Pin, J.-P., Waeber, C., Prezeau, L., Bockaert, J. & Heinemann, S. F. Alternative splicing generates metabotropic glutamate receptors inducing different patterns of calcium release in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 89, 10331–10335 (1992).

    CAS  Article  Google Scholar 

  43. 43

    Yamaguchi, S. & Nakanishi, S. Regional expression and regulation of alternative forms of mRNAs derived from two distinct transcription initiation sites of the rat mGluR5 gene. J. Neurochem. 71, 60–68 (1998).

    CAS  Article  Google Scholar 

  44. 44

    Frohman, M. A., Dush, M. K. & Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998– 9002 (1988).

    CAS  Article  Google Scholar 

  45. 45

    Towbin, H., Staehelin, T. & Bordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350– 4354 (1979).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NIH/NIDCD (DC 03013) and from Cultor Food Science, Inc. We are also grateful for support from the Umami Manufacturers' Association of Japan during the early stages of this study. We acknowledge technical assistance from Cynthia Lamp and Helena de Carvalho.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nirupa Chaudhari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chaudhari, N., Landin, A. & Roper, S. A metabotropic glutamate receptor variant functions as a taste receptor . Nat Neurosci 3, 113–119 (2000). https://doi.org/10.1038/72053

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing