Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclic AMP induces functional presynaptic boutons in hippocampal CA3–CA1 neuronal cultures

Abstract

Long-term forms of synaptic plasticity that may underlie learning and memory have been suggested to depend on changes in the number of synapses between presynaptic and postsynaptic neurons. Here we have investigated a form of synaptic plasticity in cultures of hippocampal CA3 and CA1 neurons related to the late phase of long-term potentiation, which depends on cAMP and protein synthesis. Using the fluorescent dye FM 1-43 to label active presynaptic terminals, we find that a membrane permeable analog of cAMP enhances the number of active presynaptic terminals and that this effect requires protein synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sp-cAMPS increases the number of presynaptic boutons labeled in an activity-dependent manner.
Figure 2: Quantitation of changes in the mean number and intensity of boutons stained in an activity-dependent manner by FM 1-43.
Figure 3: Rp-cAMPS, anisomycin or glutamate antagonists prevent Sp-cAMPS from enhancing the number of active boutons.
Figure 4: Effects of inhibitors of the cAMP cascade, protein synthesis or glutamate receptors on the ability of Sp-cAMPS to enhance the number of active boutons.
Figure 5: Sp-cAMPS may recruit pre-existing, functionally silent boutons.
Figure 6: Comparison of changes in the mean number of boutons stained in an activity-independent and in an activity-dependent manner.

Similar content being viewed by others

References

  1. Bailey, C. H. & Chen, M. Morphological basis of long-term habituation and sensitization in Aplysia. Science 220, 91–93 (1983).

    Article  CAS  Google Scholar 

  2. Bailey, C. H. & Chen, M. Long-term memory in Aplysia modulates the total number of varicosities of single identified sensory neurons. Proc. Natl. Acad. Sci. USA 85, 2372– 2377 (1988).

    Google Scholar 

  3. Wojtowicz, J. M., Marin, L. & Atwood, H. L. Synaptic restructuring during long-term facilitation at the crayfish neuromuscular junction. Can. J. Physiol. Pharmacol .67,167–171( 1989).

    Article  CAS  Google Scholar 

  4. Glanzman,D. L., Kandel,E. R. & Schacher, S. Target-dependent structural changes accompanying long-term synaptic facilitation in Aplysia neurons. Science 249 , 799–802 (1990).

    Article  CAS  Google Scholar 

  5. Nazif, F. A., Byrne, J. H. & Cleary, L. J. cAMP induces long-term morphological changes in sensory neurons of Aplysia. Brain Res. 539, 324– 327 (1991).

    Article  CAS  Google Scholar 

  6. Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu.Rev. Physiol. 55, 397 –426 (1993).

    Article  CAS  Google Scholar 

  7. Moser, M. B., Trommald, M. & Anderson, P. An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc. Natl. Acad. Sci. USA 91, 12673–12675 (1994).

    Article  CAS  Google Scholar 

  8. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 ( 1995).

    Article  CAS  Google Scholar 

  9. Isaac, J. T., Nicoll R. A. & Malenka, R. C. Evidence for silent synapses: implication for the expression of LTP. Neuron 15, 427– 434 (1995).

    Article  CAS  Google Scholar 

  10. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71 –75 (1996).

    Article  CAS  Google Scholar 

  11. Wu, G. Y., Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 ( 1996).

    Article  CAS  Google Scholar 

  12. Bolshakov, V. Y., Golan, H., Kandel, E. R. & Siegelbaum, S. A. Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. Neuron 19, 635–651 (1997).

    Article  CAS  Google Scholar 

  13. Isaac, J. T. R., Crair M. C., Nicoll, R. A. & Malenka, R. C. Silent synapses during development of thalamocortical inputs. Neuron 18, 1–20 ( 1997).

    Article  Google Scholar 

  14. Chavis, P., Mollard, P., Bockaert, J. & Manzoni, O. Visualization of cyclic AMP-regulated presynaptic activity at cerebellar granule cells. Neuron 20, 773–781 (1998).

    Article  CAS  Google Scholar 

  15. Chang, F. L. & Greenough, W. T. Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice. Brain Res. 20, 309, 35– 46 (1984).

    Google Scholar 

  16. Geinisman, Y., Detoledo-Morrel, L. & Morrell, F. Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res. 566, 77– 88 (1991).

    Article  CAS  Google Scholar 

  17. Geinisman, Y., Detoledo-Morrell, L., Morrell, F., Persina, I. S. & Beatty, M. A. Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J. Comp. Neurol. 368, 413–423 (1996).

    Article  CAS  Google Scholar 

  18. Buchs, P. A. & Muller, D. Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc. Natl. Acad. Sci. USA 93, 8040– 8045 (1996).

    Article  CAS  Google Scholar 

  19. Rusakov, D. A. et al. Ultrastructural synaptic correlates of spatial learning in rat hippocampus. Neuroscience 80, 69– 77 (1997).

    Article  CAS  Google Scholar 

  20. Sorra, K. E. & Harris, K. M. Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1. J. Neurosci. 18, 658–671 (1998).

    Article  CAS  Google Scholar 

  21. Frey, U., Krug, M., Reymann, K. G. & Matties, H. Anisomycin, an inhibitor of protein synthesis, blocks late phase of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res. 452, 57–65 (1988).

    Article  CAS  Google Scholar 

  22. Frey, U., Huang, Y. Y. & Kandel, E. R. Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260, 1661– 1664 (1993).

    Article  CAS  Google Scholar 

  23. Nguyen, P. V., Abel, T. & Kandel, E. R. Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107 (1994).

    Article  CAS  Google Scholar 

  24. Huang, Y. Y., Nguyen, P. V., Abel, T. & Kandel, E. R. Long lasting forms of synaptic potentiation in the mammalian hippocampus. Learn. Mem. 3, 74–85 ( 1996).

    Article  CAS  Google Scholar 

  25. Matthies, H. & Reymann, K. G. Protein kinase A inhibitors prevent the maintenance of hippocampal long-term potentiation. Neuroreport 4, 712–714 ( 1993).

    Article  CAS  Google Scholar 

  26. Qi, M. et al. Impaired hippocampal plasticity in mice lacking the Cβ1 catalytic subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 93, 1571–1576 ( 1996).

    Article  CAS  Google Scholar 

  27. Abel, T. et al. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626 (1997).

    Article  CAS  Google Scholar 

  28. Impey, S. et al. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982 ( 1996).

    Article  CAS  Google Scholar 

  29. Stevens, C. F. & Wang, Y. Facilitation and depression at single central synapses. Neuron 14, 795–802 (1995).

    Article  CAS  Google Scholar 

  30. Bolshakov, V. Y. & Siegelbaum, S. A. Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269, 1730–1734 (1995).

    Article  CAS  Google Scholar 

  31. Stevens, C. F. & Wang, Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371, 704–707 (1994).

    Article  CAS  Google Scholar 

  32. Isaac, J. T., Hjelmstad, G. O., Nicoll, R. A. & Malenka, R. C. Long-term potentiation at single fiber inputs to hippocampal CA1 pyramidal cells. Proc. Natl. Acad. Sci. USA 93, 8710 –8715 (1996).

    Article  CAS  Google Scholar 

  33. Geinisman, Y. et al. Structural synaptic correlate of long-term potentiation: formation of axospinous synapses with multiple, completely partitioned transmission zones. Hippocampus 3, 435– 445 (1993).

    Article  CAS  Google Scholar 

  34. Betz, W. J. & Bewick, G. S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200–203 (1992).

    Article  CAS  Google Scholar 

  35. Ryan, T. A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713– 724 (1993).

    Article  CAS  Google Scholar 

  36. Forti, L. et al. Loose-patch recordings of single quanta at individual hippocampal synapses. Nature 388, 874– 878 (1997).

    Article  CAS  Google Scholar 

  37. Malgaroli, A. et al. Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. Nature 268, 1624–1628 (1995).

    CAS  Google Scholar 

  38. Ryan, T. A., Noam, E. Z. & Smith, S. J. Potentiation of evoked vesicle turnover at individually resolved synaptic boutons. Neuron 17, 125 –134 (1996).

    Article  CAS  Google Scholar 

  39. Reddy, R. et al. Voltage-sensitive adenylyl cyclase activity in cultured neurons. A calcium-independent phenomenon. J. Biol. Chem. 270 , 14340–14346 (1995).

    Article  CAS  Google Scholar 

  40. Chavez-Noriega, L. E. & Stevens, C. F. Increased transmitter release at excitatory synapses produced by direct activation of adenylate cyclase in rat hippocampal slices. J. Neurosci. 14, 310–317 (1994).

    Article  CAS  Google Scholar 

  41. Dash, P. K., Karl, K. A., Colicos, M. A., Prywes, R. & Kandel, E. R. cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 88, 5061 –5065 (1991).

    Article  CAS  Google Scholar 

  42. Sheng, M., Thompson, M. A. & Greenberg, M. E. CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427–1430 (1991).

    Article  CAS  Google Scholar 

  43. Deisseroth, K., Heist, E. K. & Tsien, R. W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampus. Nature 392, 198–202 (1998).

    Article  CAS  Google Scholar 

  44. Geppert, M., Goda, Y., Stevens, C. F. & Sudhof, T. C. The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387, 810–814 ( 1997).

    Article  CAS  Google Scholar 

  45. Tong, G., Malenka, R. C. & Nicoll, R. A. Long-term potentiation in cultures of single granule cells: A presynaptic form of plasticity. Neuron 16, 1147–1157 (1996).

    Article  CAS  Google Scholar 

  46. Salin, P. A., Malenka, R. C. & Nicoll, R. A. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16, 797–803 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kelsey Martin for help and advice throughout this project, Danny Baranes for help in initial experiments and Eric Odell for help with the figures. We also thank Craig Bailey, Vadim Bolshakov, Mary Chen, Bob Hawkins, Kelsey Martin and Paul Pavlidis for comments on the manuscript. This work was partially supported by a grant from NIH and HHMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Siegelbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Zablow, L., Kandel, E. et al. Cyclic AMP induces functional presynaptic boutons in hippocampal CA3–CA1 neuronal cultures. Nat Neurosci 2, 24–30 (1999). https://doi.org/10.1038/4525

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing