Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neural regulation of immunity: molecular mechanisms and clinical translation

Abstract

Studies bridging neuroscience and immunology have identified neural pathways that regulate immunity and inflammation. Recent research using methodological advances in molecular genetics has improved our understanding of the neural control of immunity. Here we outline mechanistic insights, focusing on translational relevance and conceptual developments. We also summarize findings from recent clinical studies of bioelectronic neuromodulation in inflammatory and autoimmune diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Vagus nerve-mediated reflex circuitry in immunity and inflammation.

Debbie Maizels/Springer Nature

Figure 2: Axon reflex-like regulation of inflammation in bacterial infection.

Debbie Maizels/Springer Nature

Figure 3: Neural modulation of T cell access to CNS.
Figure 4: Catecholaminergic circuits in the neural regulation of immune responses.

Debbie Maizels/Springer Nature

References

  1. 1

    Borovikova, L.V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Tracey, K.J. The inflammatory reflex. Nature 420, 853–859 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Chiu, I.M. et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501, 52–57 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Ueno, M., Ueno-Nakamura, Y., Niehaus, J., Popovich, P.G. & Yoshida, Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat. Neurosci. 19, 784–787 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Mina-Osorio, P. et al. Neural signaling in the spleen controls B-cell responses to blood-borne antigen. Mol. Med. 18, 618–627 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Inoue, T. et al. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J. Clin. Invest. 126, 1939–1952 (2016).

    PubMed  PubMed Central  Google Scholar 

  7. 7

    Wong, C.H., Jenne, C.N., Lee, W.Y., Léger, C. & Kubes, P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334, 101–105 (2011).

    CAS  PubMed  Google Scholar 

  8. 8

    Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Arima, Y. et al. Regional neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier. Cell 148, 447–457 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Torres-Rosas, R. et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat. Med. 20, 291–295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Wang, L. et al. Pten deletion in RIP-Cre neurons protects against type 2 diabetes by activating the anti-inflammatory reflex. Nat. Med. 20, 484–492 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Ben-Shaanan, T.L. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med. 22, 940–944 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Gabanyi, I. et al. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164, 378–391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Pavlov, V.A. et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc. Natl. Acad. Sci. USA 103, 5219–5223 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Rosas-Ballina, M. et al. Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation. Brain Behav. Immun. 44, 19–27 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Ji, H. et al. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol. 7, 335–347 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Miksa, M. et al. Pivotal role of the alpha(2A)-adrenoceptor in producing inflammation and organ injury in a rat model of sepsis. PLoS One 4, e5504 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Levine, Y.A. et al. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis. PLoS One 9, e104530 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Brommer, B. et al. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level. Brain 139, 692–707 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Prass, K. et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J. Exp. Med. 198, 725–736 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Bonaz, B. et al. Chronic vagus nerve stimulation in Crohn's disease: a 6-month follow-up pilot study. Neurogastroenterol. Motil. 28, 948–953 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Koopman, F.A. et al. Vagus nerve stimulation inhibixts cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 113, 8284–8289 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Hoebe, K., Janssen, E. & Beutler, B. The interface between innate and adaptive immunity. Nat. Immunol. 5, 971–974 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    CAS  Google Scholar 

  27. 27

    Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Davis, B.K., Wen, H. & Ting, J.P. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29, 707–735 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871–882 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 510, 92–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    CAS  Google Scholar 

  33. 33

    Kelley, K.W. & McCusker, R.H. Getting nervous about immunity. Semin. Immunol. 26, 389–393 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Tracey, K.J. Understanding immunity requires more than immunology. Nat. Immunol. 11, 561–564 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Sun, J., Singh, V., Kajino-Sakamoto, R. & Aballay, A. Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science 332, 729–732 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Cao, X. & Aballay, A. Neural inhibition of dopaminergic signaling enhances immunity in a cell-non-autonomous manner. Curr. Biol. 26, 2329–2334 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Hosoi, T., Okuma, Y., Matsuda, T. & Nomura, Y. Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. Auton. Neurosci. 120, 104–107 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    de Lartigue, G., Barbier de la Serre, C., Espero, E., Lee, J. & Raybould, H.E. Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am. J. Physiol. Endocrinol. Metab. 301, E187–E195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Ma, F., Zhang, L. & Westlund, K.N. Reactive oxygen species mediate TNFR1 increase after TRPV1 activation in mouse DRG neurons. Mol. Pain 5, 31 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. 40

    Li, M. et al. Effects of complete Freund's adjuvant on immunohistochemical distribution of IL-1beta and IL-1R I in neurons and glia cells of dorsal root ganglion. Acta Pharmacol. Sin. 26, 192–198 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Kawashima, K., Fujii, T., Moriwaki, Y. & Misawa, H. Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci. 91, 1027–1032 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Cosentino, M. et al. HPLC-ED measurement of endogenous catecholamines in human immune cells and hematopoietic cell lines. Life Sci. 68, 283–295 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Pearce, J.M. Sir Charles Scott Sherrington (1857-1952) and the synapse. J. Neurol. Neurosurg. Psychiatry 75, 544 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Burke, R.E. Sir Charles Sherrington's the Integrative Action of the Nervous System: a centenary appreciation. Brain 130, 887–894 (2007).

    PubMed  PubMed Central  Google Scholar 

  45. 45

    Wood, J.D. The first Nobel Prize for integrated systems physiology: Ivan Petrovich Pavlov, 1904. Physiology (Bethesda) 19, 326–330 (2004).

    Google Scholar 

  46. 46

    Abboud, F.M. & Thames, M.D. Interaction of cardiovascular reflexes in circulatory control. in Comprehensive Physiology (ed. Pollock, D.M.) 675–753 (American Physiological Society, 2011).

  47. 47

    Yaprak, M. The axon reflex. Neuroanatomy 7, 17–19 (2008).

    Google Scholar 

  48. 48

    Houghton, B.L., Meendering, J.R., Wong, B.J. & Minson, C.T. Nitric oxide and noradrenaline contribute to the temperature threshold of the axon reflex response to gradual local heating in human skin. J. Physiol. (Lond.) 572, 811–820 (2006).

    CAS  Google Scholar 

  49. 49

    Nieuwenhoff, M.D. et al. Reproducibility of axon reflex-related vasodilation assessed by dynamic thermal imaging in healthy subjects. Microvasc. Res. 106, 1–7 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Barnes, P.J. Asthma as an axon reflex. Lancet 1, 242–245 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Dampney, R.A. Central neural control of the cardiovascular system: current perspectives. Adv. Physiol. Educ. 40, 283–296 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Travagli, R.A., Hermann, G.E., Browning, K.N. & Rogers, R.C. Brainstem circuits regulating gastric function. Annu. Rev. Physiol. 68, 279–305 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Pavlov, V.A. & Tracey, K.J. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat. Rev. Endocrinol. 8, 743–754 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Mayer, E.A. Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neurosci. 12, 453–466 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Pavlov, V.A., Wang, H., Czura, C.J., Friedman, S.G. & Tracey, K.J. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol. Med. 9, 125–134 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Berthoud, H.R. & Neuhuber, W.L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 85, 1–17 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Pavlov, P.I. Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Ann. Neurosci. 17, 136–141 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Niijima, A. The afferent discharges from sensors for interleukin 1 beta in the hepatoportal system in the anesthetized rat. J. Auton. Nerv. Syst. 61, 287–291 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Goehler, L.E. et al. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton. Neurosci. 85, 49–59 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Ordovas-Montanes, J. et al. The regulation of immunological processes by peripheral neurons in homeostasis and disease. Trends Immunol. 36, 578–604 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Goehler, L.E. et al. Interleukin-1beta in immune cells of the abdominal vagus nerve: a link between the immune and nervous systems? J. Neurosci. 19, 2799–2806 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Tracey, K.J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 117, 289–296 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Guarini, S. et al. Efferent vagal fibre stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation 107, 1189–1194 (2003).

    PubMed  PubMed Central  Google Scholar 

  64. 64

    Bernik, T.R. et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J. Exp. Med. 195, 781–788 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    van Westerloo, D.J. et al. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 130, 1822–1830 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    de Jonge, W.J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat. Immunol. 6, 844–851 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Ghia, J.E., Blennerhassett, P., Kumar-Ondiveeran, H., Verdu, E.F. & Collins, S.M. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131, 1122–1130 (2006).

    PubMed  PubMed Central  Google Scholar 

  68. 68

    Ghia, J.E., Blennerhassett, P. & Collins, S.M. Vagus nerve integrity and experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G560–G567 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Pavlov, V.A. & Tracey, K.J. Neural circuitry and immunity. Immunol. Res. 63, 38–57 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Rosas-Ballina, M. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl. Acad. Sci. USA 105, 11008–11013 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Wang, H. et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Lu, B. et al. α7 nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release. Mol. Med. 20, 350–358 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. 73

    Carnevale, D. et al. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat. Commun. 7, 13035 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Mirakaj, V., Dalli, J., Granja, T., Rosenberger, P. & Serhan, C.N. Vagus nerve controls resolution and pro-resolving mediators of inflammation. J. Exp. Med. 211, 1037–1048 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Olofsson, P.S. et al. Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectronic Medicine 2, 37–42 (2015).

    Google Scholar 

  76. 76

    Song, J.G. et al. Electroacupuncture improves survival in rats with lethal endotoxemia via the autonomic nervous system. Anesthesiology 116, 406–414 (2012).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Chiu, I.M., von Hehn, C.A. & Woolf, C.J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 15, 1063–1067 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Elenkov, I.J., Wilder, R.L., Chrousos, G.P. & Vizi, E.S. The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).

    CAS  Google Scholar 

  79. 79

    Huston, J.M. et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J. Exp. Med. 203, 1623–1628 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Sabharwal, L. et al. The Gateway Reflex, which is mediated by the inflammation amplifier, directs pathogenic immune cells into the CNS. J. Biochem. 156, 299–304 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Nakai, A., Hayano, Y., Furuta, F., Noda, M. & Suzuki, K. Control of lymphocyte egress from lymph nodes through β2-adrenergic receptors. J. Exp. Med. 211, 2583–2598 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Meisel, C., Schwab, J.M., Prass, K., Meisel, A. & Dirnagl, U. Central nervous system injury-induced immune deficiency syndrome. Nat. Rev. Neurosci. 6, 775–786 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Chamorro, A., Urra, X. & Planas, A.M. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke 38, 1097–1103 (2007).

    PubMed  PubMed Central  Google Scholar 

  84. 84

    Trakhtenberg, E.F. & Goldberg, J.L. Immunology. Neuroimmune communication. Science 334, 47–48 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Lucin, K.M., Sanders, V.M., Jones, T.B., Malarkey, W.B. & Popovich, P.G. Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Exp. Neurol. 207, 75–84 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Inskip, J.A., Ramer, L.M., Ramer, M.S. & Krassioukov, A.V. Autonomic assessment of animals with spinal cord injury: tools, techniques and translation. Spinal Cord 47, 2–35 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Lucin, K.M., Sanders, V.M. & Popovich, P.G. Stress hormones collaborate to induce lymphocyte apoptosis after high level spinal cord injury. J. Neurochem. 110, 1409–1421 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Medzhitov, R., Schneider, D.S. & Soares, M.P. Disease tolerance as a defense strategy. Science 335, 936–941 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Lawrence, A.J., Watkins, D. & Jarrott, B. Visualization of beta-adrenoceptor binding sites on human inferior vagal ganglia and their axonal transport along the rat vagus nerve. J. Hypertens. 13, 631–635 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Schreurs, J., Seelig, T. & Schulman, H. Beta 2-adrenergic receptors on peripheral nerves. J. Neurochem. 46, 294–296 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Rescorla, R.A. Pavlovian conditioning. It's not what you think it is. Am. Psychol. 43, 151–160 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    MacQueen, G., Marshall, J., Perdue, M., Siegel, S. & Bienenstock, J. Pavlovian conditioning of rat mucosal mast cells to secrete rat mast cell protease II. Science 243, 83–85 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Schedlowski, M. & Pacheco-López, G. The learned immune response: Pavlov and beyond. Brain Behav. Immun. 24, 176–185 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Goebel, M.U. et al. Behavioral conditioning of immunosuppression is possible in humans. FASEB J. 16, 1869–1873 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Longo, D.L. et al. Conditioned immune response to interferon-gamma in humans. Clin. Immunol. 90, 173–181 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Pacheco-López, G., Engler, H., Niemi, M.B. & Schedlowski, M. Expectations and associations that heal: Immunomodulatory placebo effects and its neurobiology. Brain Behav. Immun. 20, 430–446 (2006).

    PubMed  PubMed Central  Google Scholar 

  97. 97

    Benedetti, F., Mayberg, H.S., Wager, T.D., Stohler, C.S. & Zubieta, J.K. Neurobiological mechanisms of the placebo effect. J. Neurosci. 25, 10390–10402 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    de la Fuente-Fernández, R. et al. Expectation and dopamine release: mechanism of the placebo effect in Parkinson's disease. Science 293, 1164–1166 (2001).

    PubMed  PubMed Central  Google Scholar 

  99. 99

    Owyang, C. & Heldsinger, A. Vagal control of satiety and hormonal regulation of appetite. J. Neurogastroenterol. Motil. 17, 338–348 (2011).

    PubMed  PubMed Central  Google Scholar 

  100. 100

    Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S. & Schwartz, M.W. Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Luyer, M.D. et al. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J. Exp. Med. 202, 1023–1029 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Benarroch, E.E. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin. Proc. 68, 988–1001 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Shipley, M.T. Insular cortex projection to the nucleus of the solitary tract and brainstem visceromotor regions in the mouse. Brain Res. Bull. 8, 139–148 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Wrona, D. Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J. Neuroimmunol. 172, 38–58 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Haas, H.S. & Schauenstein, K. Neuroimmunomodulation via limbic structures--the neuroanatomy of psychoimmunology. Prog. Neurobiol. 51, 195–222 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Picciotto, M.R., Higley, M.J. & Mineur, Y.S. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76, 116–129 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Lee, S.T. et al. Cholinergic anti-inflammatory pathway in intracerebral hemorrhage. Brain Res. 1309, 164–171 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Pavlov, V.A. et al. Optogenetic stimulation of brain cholinergic networks suppresses inflammation. J. Immunology 196, 69.24 (2016).

    Google Scholar 

  109. 109

    Cabrera, L.Y., Evans, E.L. & Hamilton, R.H. Ethics of the electrified mind: defining issues and perspectives on the principled use of brain stimulation in medical research and clinical care. Brain Topogr. 27, 33–45 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. 110

    Fregni, F. & Pascual-Leone, A. Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat. Clin. Pract. Neurol. 3, 383–393 (2007).

    PubMed  PubMed Central  Google Scholar 

  111. 111

    Pacheco-López, G. et al. Neural substrates for behaviorally conditioned immunosuppression in the rat. J. Neurosci. 25, 2330–2337 (2005).

    PubMed  PubMed Central  Google Scholar 

  112. 112

    Conner, J.M., Chiba, A.A. & Tuszynski, M.H. The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron 46, 173–179 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Ballinger, E.C., Ananth, M., Talmage, D.A. & Role, L.W. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91, 1199–1218 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Morgan, K., Obici, S. & Rossetti, L. Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J. Biol. Chem. 279, 31139–31148 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Cheung, G.W., Kokorovic, A., Lam, C.K., Chari, M. & Lam, T.K. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab. 10, 99–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Olefsky, J.M. & Glass, C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Gregor, M.F. & Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Bastard, J.P. et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 17, 4–12 (2006).

    CAS  PubMed Central  PubMed  Google Scholar 

  119. 119

    Carvalheira, J.B., Odegaard, J.I. & Chawla, A. A new role for the brain in metabolic control. Nat. Med. 20, 472–473 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Swinburn, B.A. et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet 378, 804–814 (2011).

    PubMed  PubMed Central  Google Scholar 

  121. 121

    Cornier, M.A. et al. The metabolic syndrome. Endocr. Rev. 29, 777–822 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Gautron, L., Elmquist, J.K. & Williams, K.W. Neural control of energy balance: translating circuits to therapies. Cell 161, 133–145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Satapathy, S.K. et al. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. Mol. Med. 17, 599–606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Pardo, J.V. et al. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int J Obes (Lond) 31, 1756–1759 (2007).

    CAS  Google Scholar 

  125. 125

    Parrish, W.R. et al. Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol. Med. 14, 567–574 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Pavlov, V.A. et al. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit. Care Med. 35, 1139–1144 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Pavlov, V.A. et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 23, 41–45 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Tracey, K.J. Shock medicine. Sci. Am. 312, 28–35 (2015).

    Google Scholar 

  129. 129

    Steinman, L., Merrill, J.T., McInnes, I.B. & Peakman, M. Optimization of current and future therapy for autoimmune diseases. Nat. Med. 18, 59–65 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Eckel, R.H., Grundy, S.M. & Zimmet, P.Z. The metabolic syndrome. Lancet 365, 1415–1428 (2005).

    CAS  Google Scholar 

  131. 131

    Bouton, C.E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Steinberg, B.E., Tracey, K.J. & Slutsky, A.S. Bacteria and the neural code. N. Engl. J. Med. 371, 2131–2133 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Katsnelson, A. Momentum grows to make 'personalized' medicine more 'precise'. Nat. Med. 19, 249 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Chan, A.C. & Behrens, T.W. Personalizing medicine for autoimmune and inflammatory diseases. Nat. Immunol. 14, 106–109 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Steinman, L. A century of Pavlovian experiments forming a circuit from the elucidation of neural reflexes to pharmaceuticals and electroceuticals to treat diseases. Brain Behav. Immun. 44, 17–18 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. 136

    Chiu, I.M. et al. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity. eLife http://dx.doi.org/10.7554/eLife.04660 (2014).

  137. 137

    Chang, R.B., Strochlic, D.E., Williams, E.K., Umans, B.D. & Liberles, S.D. Vagal sensory neuron subtypes that differentially control breathing. Cell 161, 622–633 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Williams, E.K. et al. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166, 209–221 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Akert, K. & Gernandt, B.E. Neurophysiological study of vestibular and limbic influences upon vagal outflow. Electroencephalogr. Clin. Neurophysiol. 14, 904–914 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Sanz, E. et al. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA 106, 13939–13944 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Urban, D.J. & Roth, B.L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu. Rev. Pharmacol. Toxicol. 55, 399–417 (2015).

    CAS  Google Scholar 

  143. 143

    Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 18, 1213–1225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Boyden, E.S. Optogenetics and the future of neuroscience. Nat. Neurosci. 18, 1200–1201 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Montgomery, K.L., Iyer, S.M., Christensen, A.J., Deisseroth, K. & Delp, S.L. Beyond the brain: optogenetic control in the spinal cord and peripheral nervous system. Sci. Transl. Med. 8, 337rv5 (2016).

    PubMed  PubMed Central  Google Scholar 

  146. 146

    Poulin, J.-F., Tasic, B., Hjerling-Leffler, J., Trimarchi, J.M. & Awatramani, R. Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci. 19, 1131–1141 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. 147

    Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682–1697 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Kerath, B. Sherry and S. Chavan for critically reading the manuscript. This work was supported by the following grants from the National Institute of General Medical Sciences, National Institutes of Health: R01GM089807 (to V.A.P. and K.J.T.) and R01GM057226 (to K.J.T.).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Valentin A Pavlov or Kevin J Tracey.

Ethics declarations

Competing interests

The authors declare that they are inventors named on patents related to the content of this manuscript. K.J.T. also declares that he is a consultant to SetPoint Medical.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pavlov, V., Tracey, K. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci 20, 156–166 (2017). https://doi.org/10.1038/nn.4477

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing