Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Opportunities and challenges in modeling human brain disorders in transgenic primates

A Corrigendum to this article was published on 01 July 2017

This article has been updated

Abstract

Molecular genetic tools have had a profound impact on neuroscience, but until recently their application has largely been confined to a few model species, most notably mouse, zebrafish, Drosophila melanogaster and Caenorhabditis elegans. With the development of new genome engineering technologies such as CRISPR, it is becoming increasingly feasible to apply these molecular tools in a wider range of species, including nonhuman primates. This will lead to many opportunities for brain research, but it will also pose challenges. Here we identify some of these opportunities and challenges in light of recent and foreseeable technological advances and offer some suggestions. Our main focus is on the creation of new primate disease models for understanding the pathological mechanisms of brain disorders and for developing new approaches to effective treatment. However, we also emphasize that primate genetic models have great potential to address many fundamental questions about brain function, providing an essential foundation for future progress in disease research.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Change history

  • 29 August 2016

    In the version of this article initially published online, the first author's name appears as “Charles Jennings” without middle initial; it has been changed to “Charles G Jennings”. Another author's name appears in the author list as “Angela Roberts,” also without middle initial; it has been changed to “Angela C Roberts.” The error has been corrected in the PDF and HTML versions of this article.

  • 01 July 2017

    Nat. Neurosci. 19, 1123–1130 (2016); published online 26 August 2016; corrected after print 29 August 2016 In the version of this article initially published online, the first author's name appears as “Charles Jennings” without middle initial; it has been changed to “Charles G Jennings”. Another author's name appears in the author list as “Angela Roberts,” also without middle initial; it has been changed to “Angela C Roberts.

References

  1. Murray, C.J.L. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    PubMed  Google Scholar 

  2. Roehrig, C. Mental disorders top the list of the most costly conditions in the United States: $201 billion. Health Aff. (Millwood) 35, 1130–1135 (2016).

    Google Scholar 

  3. Hyman, S.E. Revolution stalled. Sci. Transl. Med. 4, 155cm11 (2012).

    PubMed  Google Scholar 

  4. Gribkoff, V.K. & Kaczmarek, L.K. The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuropharmacology http://dx.doi.org/10.1016/j.neuropharm.2016.03.021 (2016).

  5. Kaitin, K.I. & DiMasi, J.A. Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000–2009. Clin. Pharmacol. Ther. 89, 183–188 (2011).

    CAS  PubMed  Google Scholar 

  6. Amplion. Clinical Development Success Rates 2006–2015 http://www.amplion.com/clinical-development-success-rates (2016).

  7. Fidler, B. After failed schizophrenia trial, Forum Pharma to shutter this week. Xconomy http://www.xconomy.com/boston/2016/06/27/after-failed-schizophrenia-trial-forum-pharma-to-shutter-this-week/ 2016).

  8. Pangalos, M.N., Schechter, L.E. & Hurko, O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat. Rev. Drug Discov. 6, 521–532 (2007).

    CAS  PubMed  Google Scholar 

  9. Nestler, E.J. & Hyman, S.E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13, 1161–1169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fernando, A.B.P. & Robbins, T.W. Animal models of neuropsychiatric disorders. Annu. Rev. Clin. Psychol. 7, 39–61 (2011).

    CAS  PubMed  Google Scholar 

  11. Sarter, M. & Tricklebank, M. Revitalizing psychiatric drug discovery. Nat. Rev. Drug Discov. 11, 423–424 (2012).

    CAS  PubMed  Google Scholar 

  12. Institute of Medicine (US) Forum on Neuroscience and Nervous System Disorders. Improving the Utility and Translation of Animal Models for Nervous System Disorders: Workshop Summary (National Academies Press, 2013).

  13. Bluemel, J., Korte, S., Schenck, E. & Weinbauer, G. (eds.) The Nonhuman Primate in Nonclinical Drug Development and Safety Assessment 1st edn. (Elsevier, 2016).

  14. Chan, A.W., Chong, K.Y., Martinovich, C., Simerly, C. & Schatten, G. Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science 291, 309–312 (2001).

    CAS  PubMed  Google Scholar 

  15. Yang, S.-H. et al. Towards a transgenic model of Huntington's disease in a non-human primate. Nature 453, 921–924 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sasaki, E. et al. Generation of transgenic non-human primates with germline transmission. Nature 459, 523–527 (2009).

    CAS  PubMed  Google Scholar 

  17. Chan, A.W.S. Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J. 54, 211–223 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Okano, H., Miyawaki, A. & Kasai, K. Brain/MINDS: brain-mapping project in Japan. Phil. Trans. R. Soc. Lond. B http://dx.doi.org/10.1098/rstb.2014.0310 (2015).

  19. Cyranoski, D. Monkey kingdom. Nature 532, 300–302 (2016).

    CAS  PubMed  Google Scholar 

  20. Miller, J.C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011).

    CAS  PubMed  Google Scholar 

  21. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Carlson, D.F. et al. Efficient TALEN-mediated gene knockout in livestock. Proc. Natl. Acad. Sci. USA 109, 17382–17387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Niu, Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843 (2014).

    CAS  PubMed  Google Scholar 

  26. Liu, H. et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14, 323–328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, Y. et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum. Mol. Genet. 24, 3764–3774 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sasaki, E. Prospects for genetically modified non-human primate models, including the common marmoset. Neurosci. Res. 93, 110–115 (2015).

    CAS  PubMed  Google Scholar 

  29. Whitelaw, C.B.A., Sheets, T.P., Lillico, S.G. & Telugu, B.P. Engineering large animal models of human disease. J. Pathol. 238, 247–256 (2016).

    PubMed  Google Scholar 

  30. Liang, P. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6, 363–372 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Willsey, A.J. & State, M.W. Autism spectrum disorders: from genes to neurobiology. Curr. Opin. Neurobiol. 30, 92–99 (2015).

    PubMed  Google Scholar 

  32. Neale, B.M. & Sklar, P. Genetic analysis of schizophrenia and bipolar disorder reveals polygenicity but also suggests new directions for molecular interrogation. Curr. Opin. Neurobiol. 30, 131–138 (2015).

    CAS  PubMed  Google Scholar 

  33. Del-Aguila, J.L. et al. Alzheimer's disease: rare variants with large effect sizes. Curr. Opin. Genet. Dev. 33, 49–55 (2015).

    CAS  PubMed  Google Scholar 

  34. Watakabe, A. et al. Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci. Res. 93, 144–157 (2015).

    PubMed  Google Scholar 

  35. Deverman, B.E. et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34, 204–209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Choudhury, S.R. et al. Viral vectors for therapy of neurologic diseases. Neuropharmacology http://dx.doi.org/10.1016/j.neuropharm.2016.02.013 (2016).

  37. Han, X. et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191–198 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Diester, I. et al. An optogenetic toolbox designed for primates. Nat. Neurosci. 14, 387–397 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Krishnaswami, S.R. et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat. Protoc. 11, 499–524 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Anderson, D.J. & Perona, P. Toward a science of computational ethology. Neuron 84, 18–31 (2014).

    CAS  PubMed  Google Scholar 

  43. Sadagopan, S., Temiz-Karayol, N.Z. & Voss, H.U. High-field functional magnetic resonance imaging of vocalization processing in marmosets. Sci. Rep. 5, 10950 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Herrmann, T. et al. The travelling-wave primate system: a new solution for magnetic resonance imaging of macaque monkeys at 7 Tesla ultra-high field. PLoS One 10, e0129371 (2015).

    PubMed  PubMed Central  Google Scholar 

  45. Eliades, S.J. & Wang, X. Chronic multi-electrode neural recording in free-roaming monkeys. J. Neurosci. Methods 172, 201–214 (2008).

    PubMed  PubMed Central  Google Scholar 

  46. Roy, S. & Wang, X. Wireless multi-channel single unit recording in freely moving and vocalizing primates. J. Neurosci. Methods 203, 28–40 (2012).

    PubMed  Google Scholar 

  47. Yin, M. et al. Wireless neurosensor for full-spectrum electrophysiology recordings during free behavior. Neuron 84, 1170–1182 (2014).

    CAS  PubMed  Google Scholar 

  48. Fernandez-Leon, J.A. et al. A wireless transmission neural interface system for unconstrained non-human primates. J. Neural Eng. 12, 056005 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Izpisua Belmonte, J.C. et al. Brains, genes, and primates. Neuron 86, 617–631 (2015).

    PubMed  Google Scholar 

  50. Vallender, E.J. & Miller, G.M. Nonhuman primate models in the genomic era: a paradigm shift. ILAR J. 54, 154–165 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaiser, T. & Feng, G. Modeling psychiatric disorders for developing effective treatments. Nat. Med. 21, 979–988 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tu, Z., Yang, W., Yan, S., Guo, X. & Li, X.-J. CRISPR/Cas9:a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol. Neurodegener. 10, 35 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Okano, H., Hikishima, K., Iriki, A. & Sasaki, E. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Semin. Fetal Neonatal Med. 17, 336–340 (2012).

    PubMed  Google Scholar 

  54. Bendor, D. & Wang, X. The neuronal representation of pitch in primate auditory cortex. Nature 436, 1161–1165 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Song, X., Osmanski, M.S., Guo, Y. & Wang, X. Complex pitch perception mechanisms are shared by humans and a New World monkey. Proc. Natl. Acad. Sci. USA 113, 781–786 (2016).

    CAS  PubMed  Google Scholar 

  56. Mitchell, J.F., Reynolds, J.H. & Miller, C.T. Active vision in marmosets: a model system for visual neuroscience. J. Neurosci. 34, 1183–1194 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shiba, Y., Santangelo, A.M. & Roberts, A.C. Beyond the medial regions of prefrontal cortex in the regulation of fear and anxiety. Front. Syst. Neurosci. 10, 12 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. Miller, C.T. et al. Marmosets: a neuroscientific model of human social behavior. Neuron 90, 219–233 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaas, J.H. The evolution of brains from early mammals to humans. Wiley Interdiscip. Rev. Cogn. Sci. 4, 33–45 (2013).

    PubMed  Google Scholar 

  60. Mashiko, H. et al. Comparative anatomy of marmoset and mouse cortex from genomic expression. J. Neurosci. 32, 5039–5053 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, D. et al. Medial prefrontal activity during delay period contributes to learning of a working memory task. Science 346, 458–463 (2014).

    CAS  PubMed  Google Scholar 

  62. Leach, P.T., Hayes, J., Pride, M., Silverman, J.L. & Crawley, J.N. Normal performance of Fmr1 mice on a touchscreen delayed nonmatching to position working memory task. eNeuro http://dx.doi.org/10.1523/eneuro.0143-15.2016 (2016).

  63. Shultz, S., Opie, C. & Atkinson, Q.D. Stepwise evolution of stable sociality in primates. Nature 479, 219–222 (2011).

    CAS  PubMed  Google Scholar 

  64. Donaldson, Z.R. & Young, L.J. Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322, 900–904 (2008).

    CAS  PubMed  Google Scholar 

  65. Garrison, J.L. et al. Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. Science 338, 540–543 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Freeman, S.M. & Young, L.J. Comparative perspectives on oxytocin and vasopressin receptor research in rodents and primates: translational implications. J. Neuroendocrinol. http://dx.doi.org/10.1111/jne.12382 (2016).

  67. Levin, E.D. α7-Nicotinic receptors and cognition. Curr. Drug Targets 13, 602–606 (2012).

    CAS  PubMed  Google Scholar 

  68. Quik, M. et al. Localization of nicotinic receptor subunit mRNAs in monkey brain by in situ hybridization. J. Comp. Neurol. 425, 58–69 (2000).

    CAS  PubMed  Google Scholar 

  69. Fidler, B. Restructuring looms for Forum as neuro drug fails key clinical test. Xconomy http://www.xconomy.com/boston/2016/03/24/restructuring-looms-for-forum-as-neuro-drug-fails-key-clinical-test/ (2016).

  70. Lemon, R.N. Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–218 (2008).

    CAS  PubMed  Google Scholar 

  71. Butti, C., Santos, M., Uppal, N. & Hof, P.R. Von Economo neurons: clinical and evolutionary perspectives. Cortex 49, 312–326 (2013).

    PubMed  Google Scholar 

  72. Herculano-Houzel, S., Collins, C.E., Wong, P. & Kaas, J.H. Cellular scaling rules for primate brains. Proc. Natl. Acad. Sci. USA 104, 3562–3567 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ventura-Antunes, L., Mota, B. & Herculano-Houzel, S. Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains. Front. Neuroanat. 7, 3 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. Takeda, S. et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat. Commun. 6, 8490 (2015).

    CAS  PubMed  Google Scholar 

  75. LaFerla, F.M. & Green, K.N. Animal models of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006320 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. Cummings, J.L., Morstorf, T. & Zhong, K. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res. Ther. 6, 37 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Forny-Germano, L. et al. Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J. Neurosci. 34, 13629–13643 (2014).

    PubMed  PubMed Central  Google Scholar 

  78. Johnson, M.B. et al. Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex. Nat. Neurosci. 18, 637–646 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Otani, T., Marchetto, M.C., Gage, F.H., Simons, B.D. & Livesey, F.J. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18, 467–480 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Webb, S.J., Jones, E.J.H., Kelly, J. & Dawson, G. The motivation for very early intervention for infants at high risk for autism spectrum disorders. Int. J. Speech Lang Pathol. 16, 36–42 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. Qureshi, I.A. & Mehler, M.F. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat. Rev. Neurosci. 13, 528–541 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Walker, S. & Scherer, S.W. Identification of candidate intergenic risk loci in autism spectrum disorder. BMC Genomics 14, 499 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Batzoglou, S., Pachter, L., Mesirov, J.P., Berger, B. & Lander, E.S. Human and mouse gene structure: comparative analysis and application to exon prediction. Genome Res. 10, 950–958 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bernard, A. et al. Transcriptional architecture of the primate neocortex. Neuron 73, 1083–1099 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bateson, P. Review of Research using Non-Human Primates http://www.bbsrc.ac.uk/documents/review-research-using-nhps-pdf/ (2011).

  86. Emanuel, E.J., Wendler, D. & Grady, C. What makes clinical research ethical? J. Am. Med. Assoc. 283, 2701–2711 (2000).

    CAS  Google Scholar 

  87. Liu, Z. et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 530, 98–102 (2016).

    CAS  PubMed  Google Scholar 

  88. Liu, Z. et al. Generation of macaques with sperm derived from juvenile monkey testicular xenografts. Cell Res. 26, 139–142 (2016).

    PubMed  Google Scholar 

  89. Kanatsu-Shinohara, M. et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69, 612–616 (2003).

    CAS  PubMed  Google Scholar 

  90. Sato, T. et al. Genome editing in mouse spermatogonial stem cell lines using TALEN and double-nicking CRISPR/Cas9. Stem Cell Reports 5, 75–82 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou, Q. et al. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18, 330–340 (2016).

    CAS  PubMed  Google Scholar 

  92. Campbell, K.H., McWhir, J., Ritchie, W.A. & Wilmut, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66 (1996).

    CAS  PubMed  Google Scholar 

  93. Hrabeěde Angelis, M. et al. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat. Genet. 47, 969–978 (2015).

    PubMed  Google Scholar 

  94. Perrin, S. Preclinical research: make mouse studies work. Nature 507, 423–425 (2014).

    PubMed  Google Scholar 

  95. Berry-Kravis, E.M. et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci. Transl. Med. 4, 152ra127 (2012).

    PubMed  Google Scholar 

  96. Berry-Kravis, E. et al. Mavoglurant in Fragile X syndrome: results of two randomized, double-blind, placebo-controlled trials. Sci. Transl. Med. 8, 321ra5 (2016).

    PubMed  Google Scholar 

  97. Lombardi, L.M., Baker, S.A. & Zoghbi, H.Y. MECP2 disorders: from the clinic to mice and back. J. Clin. Invest. 125, 2914–2923 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. Bourgeron, T. Current knowledge on the genetics of autism and propositions for future research. C. R. Biol. 339, 300–307 (2016).

    PubMed  Google Scholar 

  99. Agamaite, J.A., Chang, C.-J., Osmanski, M.S. & Wang, X. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus). J. Acoust. Soc. Am. 138, 2906–2928 (2015).

    PubMed  PubMed Central  Google Scholar 

  100. Clarke, H.F., Horst, N.K. & Roberts, A.C. Regional inactivations of primate ventral prefrontal cortex reveal two distinct mechanisms underlying negative bias in decision making. Proc. Natl. Acad. Sci. USA 112, 4176–4181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kangas, B.D., Bergman, J. & Coyle, J.T. Touchscreen assays of learning, response inhibition, and motivation in the marmoset (Callithrix jacchus). Anim. Cogn. 19, 673–677 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Ioannidis, J.P.A. Why most published research findings are false. PLoS Med. 2, e124 (2005).

    PubMed  PubMed Central  Google Scholar 

  103. Collins, F.S. & Tabak, L.A. Policy: NIH plans to enhance reproducibility. Nature 505, 612–613 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. Button, K.S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    CAS  PubMed  Google Scholar 

  105. Open Science Collaboration. Psychology. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).

  106. Tsilidis, K.K. et al. Evaluation of excess significance bias in animal studies of neurological diseases. PLoS Biol. 11, e1001609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Bauer, S.A. & Baker, K.C. Persistent effects of peer rearing on abnormal and species-appropriate activities but not social behavior in group-housed rhesus macaques (Macaca mulatta). Comp. Med. 66, 129–136 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Committee on Strategies for Small-Number-Participant Clinical Research Trials, Board on Health Sciences Policy & Institute of Medicine. Small Clinical Trials: Issues and Challenges (National Academies Press, 2001).

  109. National Research Council (US) Institute for Laboratory Animal Research. Transportation of Primates and the Animal Welfare Act (National Academies Press, 2003).

  110. Bloom, D.E. et al. The Global Economic Burden of Noncommunicable Diseases (World Economic Forum, Geneva, 2011).

  111. Chisholm, D. et al. Scaling-up treatment of depression and anxiety: a global return on investment analysis. Lancet Psychiatry 3, 415–424 (2016).

    PubMed  Google Scholar 

  112. Patel, V. et al. Addressing the burden of mental, neurological, and substance use disorders: key messages from Disease Control Priorities, 3rd edition. Lancet 387, 1672–1685 (2016).

    PubMed  Google Scholar 

  113. Chan, A.W.S. et al. Progressive cognitive deficit, motor impairment and striatal pathology in a transgenic Huntington disease monkey model from infancy to adulthood. PLoS One 10, e0122335 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. Niu, Y. et al. Early Parkinson's disease symptoms in α-synuclein transgenic monkeys. Hum. Mol. Genet. 24, 2308–2317 (2015).

    CAS  PubMed  Google Scholar 

  115. Cox, D.B.T., Platt, R.J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yang, L. et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350, 1101–1104 (2015).

    CAS  PubMed  Google Scholar 

  117. Slaymaker, I.M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    CAS  PubMed  Google Scholar 

  118. Kleinstiver, B.P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wan, H. et al. One-step generation of p53 gene biallelic mutant cynomolgus monkey via the CRISPR/Cas system. Cell Res. 25, 258–261 (2015).

    CAS  PubMed  Google Scholar 

  120. Chen, Y. et al. Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell 17, 116–124 (2015).

    CAS  PubMed  Google Scholar 

  121. Swiech, L. et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat. Biotechnol. 33, 102–106 (2015).

    CAS  PubMed  Google Scholar 

  122. Platt, R.J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    CAS  PubMed  Google Scholar 

  125. Dominguez, A.A., Lim, W.A. & Qi, L.S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17, 5–15 (2016).

    CAS  PubMed  Google Scholar 

  126. Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A. & Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Abudayyeh, O.O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science http://dx.doi.org/10.1126/science.aaf5573 (2016).

Download references

Acknowledgements

Research projects related to this work at MIT and Broad Institute are supported by the Poitras Center for Affective Disorders Research, the Stanley Center for Psychiatric Disorders Research at Broad Institute of MIT and Harvard, CHDI, Global Academic Innovation Partnering at F. Hoffmann-La Roche Ltd, The Brain Research Foundation, the Massachusetts Life Sciences Center, NIH BRAIN Initiative and Edward and Kay Poitras. Related research at Shenzhen Institutes of Advanced Technology is supported by a Shenzhen Peacock plan grant (KQTD20140630180249366) and by the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2014ZT05S020). L.W. is supported by the CAS Strategic Priority Research Program (XDB02050003) and National Science Fund for Distinguished Young Scholars (No. 81425010). H.Z. is supported by a Shenzhen Subject Arrangement Basic Research Grant (JCYJ20151030140325151) and by the CAS Hundred Talent program. Some of the ideas presented here emerged from discussions at a symposium on transgenic primate research that was held at Shenzhen Institutes of Advanced Technology in China on March 22–23, 2016. We thank all the participants at that meeting for their contributions, and we thank the Ministry of Science and Technology of China and the Chinese Academy of Sciences for financial support of the meeting.

Author information

Authors and Affiliations

Authors

Contributions

C.G.J. and R.L. wrote the first draft of the manuscript. All authors reviewed the manuscript and participated in discussions and development of ideas.

Corresponding author

Correspondence to Guoping Feng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jennings, C., Landman, R., Zhou, Y. et al. Opportunities and challenges in modeling human brain disorders in transgenic primates. Nat Neurosci 19, 1123–1130 (2016). https://doi.org/10.1038/nn.4362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4362

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing