Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The mechanics of state-dependent neural correlations

Abstract

Simultaneous recordings from large neural populations are becoming increasingly common. An important feature of population activity is the trial-to-trial correlated fluctuation of spike train outputs from recorded neuron pairs. Similar to the firing rate of single neurons, correlated activity can be modulated by a number of factors, from changes in arousal and attentional state to learning and task engagement. However, the physiological mechanisms that underlie these changes are not fully understood. We review recent theoretical results that identify three separate mechanisms that modulate spike train correlations: changes in input correlations, internal fluctuations and the transfer function of single neurons. We first examine these mechanisms in feedforward pathways and then show how the same approach can explain the modulation of correlations in recurrent networks. Such mechanistic constraints on the modulation of population activity will be important in statistical analyses of high-dimensional neural data.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of correlation transfer in networks of spiking neurons.
Figure 2: Three mechanisms for correlation modulation.
Figure 3: Dissecting correlation modulation.
Figure 4: Correlation modulation in recurrent networks.

References

  1. Ganmor, E., Segev, R. & Schneidman, E. A thesaurus for a neural population code. eLife 4, e06134 (2015).

    Article  PubMed Central  Google Scholar 

  2. Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68, 362–385 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Beck, J.M. et al. Probabilistic population codes for Bayesian decision making. Neuron 60, 1142–1152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Sherman, S.M. & Guillery, R.W. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc. Natl. Acad. Sci. USA 95, 7121–7126 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pillow, J.W. et al. Spatio-temporal correlations and visual signaling in a complete neuronal population. Nature 454, 995–999 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cunningham, J.P. & Yu, B.M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goris, R.L., Movshon, J.A. & Simoncelli, E.P. Partitioning neuronal variability. Nat. Neurosci. 17, 858–865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ecker, A.S. et al. State dependence of noise correlations in macaque primary visual cortex. Neuron 82, 235–248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, I.C., Okun, M., Carandini, M. & Harris, K.D. The Nature of shared cortical variability. Neuron 87, 644–656 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ledoit, O. & Wolf, M. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal. 88, 365–411 (2004).

    Article  Google Scholar 

  13. Yatsenko, D. et al. Improved estimation and interpretation of correlations in neural circuits. PLoS Comput. Biol. 11, e1004083 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Stevenson, I.H. & Kording, K.P. How advances in neural recording affect data analysis. Nat. Neurosci. 14, 139–142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  16. Ferster, D. & Miller, K.D. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23, 441–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Ben-Yishai, R., Bar-Or, R.L. & Sompolinsky, H. Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92, 3844–3848 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sompolinsky, H. & Shapley, R. New perspectives on the mechanisms for orientation selectivity. Curr. Opin. Neurobiol. 7, 514–522 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Ringach, D.L., Hawken, M.J. & Shapley, R. Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281–284 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Priebe, N.J. & Ferster, D. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57, 482–497 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Bruno, R.M. & Simons, D.J. Feedforward mechanisms of excitatory and inhibitory cortical receptive fields. J. Neurosci. 22, 10966–10975 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, B.H., Wu, G.K., Arbuckle, R., Tao, H.W. & Zhang, L.I. Defining cortical frequency tuning with recurrent excitatory circuitry. Nat. Neurosci. 10, 1594–1600 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barak, O. & Tsodyks, M. Working models of working memory. Curr. Opin. Neurobiol. 25, 20–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Giocomo, L.M., Moser, M.B. & Moser, E.I. Computational models of grid cells. Neuron 71, 589–603 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Cohen, M.R. & Kohn, A. Measuring and interpreting neuronal correlations. Nat. Neurosci. 14, 811–819 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Averbeck, B.B., Latham, P.E. & Pouget, A. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Ecker, A.S., Berens, P., Tolias, A.S. & Bethge, M. The effect of noise correlations in populations of diversely tuned neurons. J. Neurosci. 31, 14272–14283 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moreno-Bote, R. et al. Information-limiting correlations. Nat. Neurosci. 17, 1410–1417 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, Y., Zylberberg, J. & Shea-Brown, E. The sign rule and beyond: boundary effects, flexibility and noise correlations in neural population codes. PLoS Comput. Biol. 10, e1003469 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Shadlen, M.N. & Newsome, W.T. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosenbaum, R., Trousdale, J. & Josić, K. The effects of pooling on spike train correlations. Front. Neurosci. 5, 58 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Renart, A. et al. The asynchronous state in cortical circuits. Science 327, 587–590 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pernice, V., Staude, B., Cardanobile, S. & Rotter, S. How structure determines correlations in neuronal networks. PLoS Comput. Biol. 7, e1002059 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trousdale, J., Hu, Y., Shea-Brown, E. & Josić, K. Impact of network structure and cellular response on spike time correlations. PLoS Comput. Biol. 8, e1002408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Helias, M., Tetzlaff, T. & Diesmann, M. The correlation structure of local neuronal networks intrinsically results from recurrent dynamics. PLoS Comput. Biol. 10, e1003428 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wimmer, K. et al. Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nat. Commun. 6, 6177 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. de la Rocha, J., Doiron, B., Shea-Brown, E., Josić, K. & Reyes, A. Correlation between neural spike trains increases with firing rate. Nature 448, 802–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Shea-Brown, E., Josić, K., de la Rocha, J. & Doiron, B. Correlation and synchrony transfer in integrate-and-fire neurons: basic properties and consequences for coding. Phys. Rev. Lett. 100, 108102 (2008).

    Article  PubMed  CAS  Google Scholar 

  39. Tchumatchenko, T., Malyshev, A., Geisel, T., Volgushev, M. & Wolf, F. Correlations and synchrony in threshold neuron models. Phys. Rev. Lett. 104, 058102 (2010).

    Article  PubMed  CAS  Google Scholar 

  40. Churchland, M.M. et al. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13, 369–378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harris, K.D. & Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McGinley, M.J. et al. Waking state: rapid variations modulate neural and behavioral responses. Neuron 87, 1143–1161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eggermann, E., Kremer, Y., Crochet, S. & Petersen, C.C. Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell Rep. 9, 1654–1660 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Bair, W., Zohary, E. & Newsome, W.T. Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21, 1676–1697 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schulz, D.P.A., Sahani, M. & Carandini, M. Five key factors determining pairwise correlations in visual cortex. J. Neurophysiol. 114, 1022–1033 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ecker, A.S. et al. Decorrelated neuronal firing in cortical microcircuits. Science 327, 584–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Hansen, B.J., Chelaru, M.I. & Dragoi, V. Correlated variability in laminar cortical circuits. Neuron 76, 590–602 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Smith, M.A. & Kohn, A. Spatial and temporal scales of neuronal correlation in primary visual cortex. J. Neurosci. 28, 12591–12603 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gururangan, S.S., Sadovsky, A.J. & MacLean, J.N. Analysis of graph invariants in functional neocortical circuitry reveals generalized features common to three areas of sensory cortex. PLoS Comput. Biol. 10, e1003710 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Brunel, N. & Hakim, V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Lindner, B. & Schimansky-Geier, L. Transmission of noise coded versus additive signals through a neuronal ensemble. Phys. Rev. Lett. 86, 2934–2937 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. White, J.A., Rubinstein, J.T. & Kay, A.R. Channel noise in neurons. Trends Neurosci. 23, 131–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Branco, T. & Staras, K. The probability of neurotransmitter release: variability and feedback control at single synapses. Nat. Rev. Neurosci. 10, 373–383 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Carandini, M. Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS Biol. 2, e264 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lee, S.H. & Dan, Y. Neuromodulation of brain states. Neuron 76, 209–222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mochol, G., Hermoso-Mendizabal, A., Sakata, S., Harris, K.D. & de la Rocha, J. Stochastic transitions into silence cause noise correlations in cortical circuits. Proc. Natl. Acad. Sci. USA 112, 3529–3534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Okun, M. & Lampl, I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 11, 535–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Haider, B., Duque, A., Hasenstaub, A.R. & McCormick, D.A. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535–4545 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Graupner, M. & Reyes, A.D. Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex. J. Neurosci. 33, 15075–15085 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Miller, K.D., Pinto, D.J. & Simons, D.J. Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr. Opin. Neurobiol. 11, 488–497 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Berman, N.J. & Maler, L. Inhibition evoked from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus). J. Neurophysiol. 80, 3173–3196 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Wehr, M. & Zador, A.M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426, 442–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Priebe, N.J. & Ferster, D. Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron 45, 133–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Middleton, J.W., Omar, C., Doiron, B. & Simons, D.J. Neural correlation is stimulus modulated by feedforward inhibitory circuitry. J. Neurosci. 32, 506–518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ly, C., Middleton, J.W. & Doiron, B. Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex. Front. Comput. Neurosci. 6, 7 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Litwin-Kumar, A., Chacron, M.J. & Doiron, B. The spatial structure of stimuli shapes the timescale of correlations in population spiking activity. PLoS Comput. Biol. 8, e1002667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Simmonds, B. & Chacron, M.J. Activation of parallel fiber feedback by spatially diffuse stimuli reduces signal and noise correlations via independent mechanisms in a cerebellum-like structure. PLoS Comput. Biol. 11, e1004034 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. van Vreeswijk, C. & Sompolinsky, H. Chaotic balanced state in a model of cortical circuits. Neural Comput. 10, 1321–1371 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Tetzlaff, T., Helias, M., Einevoll, G.T. & Diesmann, M. Decorrelation of neural-network activity by inhibitory feedback. PLoS Comput. Biol. 8, e1002596 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Parga, N. Towards a self-consistent description of irregular and asynchronous cortical activity. J. Stat. Mech. 2013, P03010 (2013).

    Article  Google Scholar 

  71. Vere-Jones, D. Simple stochastic models for the release of quanta of transmitter from a nerve terminal. Aust. J. Stat. 8, 53–63 (1966).

    Article  Google Scholar 

  72. Tsodyks, M., Pawelzik, K. & Markram, H. Neural networks with dynamic synapses. Neural Comput. 10, 821–835 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Fuhrmann, G., Segev, I., Markram, H. & Tsodyks, M. Coding of temporal information by activity-dependent synapses. J. Neurophysiol. 87, 140–148 (2002).

    Article  PubMed  Google Scholar 

  74. de la Rocha, J. & Parga, N. Short-term synaptic depression causes a non-monotonic response to correlated stimuli. J. Neurosci. 25, 8416–8431 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rosenbaum, R., Rubin, J. & Doiron, B. Short-term synaptic depression imposes a frequency dependent filter on synaptic information transfer. PLoS Comput. Biol. 8, e1002557 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Goldman, M.S. Enhancement of information transmission efficiency by synaptic failures. Neural Comput. 16, 1137–1162 (2004).

    Article  PubMed  Google Scholar 

  78. Rosenbaum, R., Rubin, J.E. & Doiron, B. Short-term synaptic depression and stochastic vesicle dynamics reduce and shape neuronal correlations. J. Neurophysiol. 109, 475–484 (2013).

    Article  PubMed  Google Scholar 

  79. Bird, A.D. & Richardson, M.J. Long-term plasticity determines the postsynaptic response to correlated afferents with multivesicular short-term synaptic depression. Front. Comput. Neurosci. 8, 2 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cecchi, G.A. et al. Noise in neurons is message dependent. Proc. Natl. Acad. Sci. USA 97, 5557–5561 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Faisal, A.A., Selen, L.P. & Wolpert, D.M. Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rubinstein, J.T. Threshold fluctuations in an N sodium channel model of the node of Ranvier. Biophys. J. 68, 779–785 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gal, A. et al. Dynamics of excitability over extended timescales in cultured cortical neurons. J. Neurosci. 30, 16332–16342 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hô, N. & Destexhe, A. Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J. Neurophysiol. 84, 1488–1496 (2000).

    Article  PubMed  Google Scholar 

  85. Doiron, B., Longtin, A., Berman, N. & Maler, L. Subtractive and divisive inhibition: effect of voltage-dependent inhibitory conductances and noise. Neural Comput. 13, 227–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Hansel, D. & van Vreeswijk, C. How noise contributes to contrast invariance of orientation tuning in cat visual cortex. J. Neurosci. 22, 5118–5128 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Prescott, S.A. & De Koninck, Y. Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc. Natl. Acad. Sci. USA 100, 2076–2081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chance, F.S., Abbott, L.F. & Reyes, A.D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Litwin-Kumar, A., Oswald, A.M., Urban, N.N. & Doiron, B. Balanced synaptic input shapes the correlation between neural spike trains. PLoS Comput. Biol. 7, e1002305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cardin, J.A., Palmer, L.A. & Contreras, D. Cellular mechanisms underlying stimulus-dependent gain modulation in primary visual cortex neurons in vivo. Neuron 59, 150–160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ginzburg, I. & Sompolinsky, H. Theory of correlations in stochastic neural networks. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50, 3171–3191 (1994).

    CAS  PubMed  Google Scholar 

  92. Moreno-Bote, R. & Parga, N. Auto- and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses. Phys. Rev. Lett. 96, 028101 (2006).

    Article  PubMed  CAS  Google Scholar 

  93. Rosenbaum, R. & Josić, K. Mechanisms that modulate the transfer of spiking correlations. Neural Comput. 23, 1261–1305 (2011).

    Article  PubMed  Google Scholar 

  94. Kruscha, A. & Lindner, B. Spike-count distribution in a neuronal population under weak common stimulation. Phys. Rev. E 92, 052817 (2015).

    Article  CAS  Google Scholar 

  95. Lyamzin, D.R. et al. Nonlinear transfer of signal and noise correlations in cortical networks. J. Neurosci. 35, 8065–8080 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cohen, M.R. & Maunsell, J.H. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Galán, R.F., Fourcaud-Trocmé, N., Ermentrout, G.B. & Urban, N.N. Correlation-induced synchronization of oscillations in olfactory bulb neurons. J. Neurosci. 26, 3646–3655 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Barreiro, A.K., Shea-Brown, E. & Thilo, E.L. Time scales of spike-train correlation for neural oscillators with common drive. Phys. Rev. E 81, 011916 (2010).

    Article  CAS  Google Scholar 

  99. Abouzeid, A. & Ermentrout, B. Correlation transfer in stochastically driven neural oscillators over long and short time scales. Phys. Rev. E 84, 061914 (2011).

    Article  CAS  Google Scholar 

  100. Hong, S., Ratté, S., Prescott, S.A. & De Schutter, E. Single neuron firing properties impact correlation-based population coding. J. Neurosci. 32, 1413–1428 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ocker, G.K. & Doiron, B. Kv7 channels regulate pairwise spiking covariability in health and disease. J. Neurophysiol. 112, 340–352 (2014).

    Article  PubMed  Google Scholar 

  102. Burak, Y., Lewallen, S. & Sompolinsky, H. Stimulus-dependent correlations in threshold-crossing spiking neurons. Neural Comput. 21, 2269–2308 (2009).

    Article  PubMed  Google Scholar 

  103. Markowitz, D.A., Collman, F., Brody, C.D., Hopfield, J.J. & Tank, D.W. Rate-specific synchrony: using noisy oscillations to detect equally active neurons. Proc. Natl. Acad. Sci. USA 105, 8422–8427 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhou, P., Burton, S.D., Urban, N.N. & Ermentrout, G.B. Impact of neuronal heterogeneity on correlated colored noise-induced synchronization. Front. Comput. Neurosci. 7, 113 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Silver, R.A. Neuronal arithmetic. Nat. Rev. Neurosci. 11, 474–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kass, R.E. & Ventura, V. Spike count correlation increases with length of time interval in the presence of trial-to-trial variation. Neural Comput. 18, 2583–2591 (2006).

    Article  PubMed  Google Scholar 

  107. Ermentrout, B. Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61, 353 (1998).

    Article  Google Scholar 

  108. Vogels, T.P., Rajan, K. & Abbott, L.F. Neural network dynamics. Annu. Rev. Neurosci. 28, 357–376 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Gerstner, W., Kistler, W.M., Naud, R. & Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge University Press, 2014).

  110. Kopell, N., Ermentrout, G.B., Whittington, M.A. & Traub, R.D. Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. USA 97, 1867–1872 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brunel, N. & Wang, X.J. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J. Neurophysiol. 90, 415–430 (2003).

    Article  PubMed  Google Scholar 

  112. Hertz, J. Cross-correlations in high-conductance states of a model cortical network. Neural Comput. 22, 427–447 (2010).

    Article  PubMed  Google Scholar 

  113. Bujan, A.F., Aertsen, A. & Kumar, A. Role of input correlations in shaping the variability and noise correlations of evoked activity in the neocortex. J. Neurosci. 35, 8611–8625 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Litwin-Kumar, A. & Doiron, B. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci. 15, 1498–1505 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Doiron, B. & Litwin-Kumar, A. Balanced neural architecture and the idling brain. Front. Comput. Neurosci. 8, 56 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Schaub, M.T., Billeh, Y.N., Anastassiou, C.A., Koch, C. & Barahona, M. Emergence of slow-switching assemblies in structured neuronal networks. PLoS Comput. Biol. 11, e1004196 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Keane, A. & Gong, P. Propagating waves can explain irregular neural dynamics. J. Neurosci. 35, 1591–1605 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kriener, B., Helias, M., Aertsen, A. & Rotter, S. Correlations in spiking neuronal networks with distance dependent connections. J. Comput. Neurosci. 27, 177–200 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kelly, R.C., Smith, M.A., Kass, R.E. & Lee, T.S. Local field potentials indicate network state and account for neuronal response variability. J. Comput. Neurosci. 29, 567–579 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Doiron, B., Lindner, B., Longtin, A., Maler, L. & Bastian, J. Oscillatory activity in electrosensory neurons increases with the spatial correlation of the stochastic input stimulus. Phys. Rev. Lett. 93, 048101 (2004).

    Article  PubMed  CAS  Google Scholar 

  122. Lindner, B., Doiron, B. & Longtin, A. Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. Phys. Rev. E 72, 061919 (2005).

    Article  CAS  Google Scholar 

  123. Polk, A., Litwin-Kumar, A. & Doiron, B. Correlated neural variability in persistent state networks. Proc. Natl. Acad. Sci. USA 109, 6295–6300 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ostojic, S., Brunel, N. & Hakim, V. How connectivity, background activity and synaptic properties shape the cross-correlation between spike trains. J. Neurosci. 29, 10234–10253 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ostojic, S. Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nat. Neurosci. 17, 594–600 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Harish, O. & Hansel, D. Asynchronous rate chaos in spiking neuronal circuits. PLoS Comput. Biol. 11, e1004266 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gu, Y. et al. Perceptual learning reduces interneuronal correlations in macaque visual cortex. Neuron 71, 750–761 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Romo, R., Hernández, A., Zainos, A. & Salinas, E. Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38, 649–657 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278, 1950–1953 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Chacron, M.J. & Bastian, J. Population coding by electrosensory neurons. J. Neurophysiol. 99, 1825–1835 (2008).

    Article  PubMed  Google Scholar 

  133. Mitchell, J.F., Sundberg, K.A. & Reynolds, J.H. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63, 879–888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ruff, D.A. & Cohen, M.R. Attention can either increase or decrease spike count correlations in visual cortex. Nat. Neurosci. 17, 1591–1597 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gregoriou, G.G., Rossi, A.F., Ungerleider, L.G. & Desimone, R. Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nat. Neurosci. 17, 1003–1011 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gutnisky, D.A. & Dragoi, V. Adaptive coding of visual information in neural populations. Nature 452, 220–224 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Snyder, A.C., Morais, M.J., Kohn, A. & Smith, M.A. Correlations in V1 are reduced by stimulation outside the receptive field. J. Neurosci. 34, 11222–11227 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Herrero, J.L., Gieselmann, M.A., Sanayei, M. & Thiele, A. Attention-induced variance and noise correlation reduction in macaque V1 is mediated by NMDA receptors. Neuron 78, 729–739 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J.A. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86, 740–754 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Reimer, J. et al. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84, 355–362 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Erisken, S. et al. Effects of locomotion extend throughout the mouse early visual system. Curr. Biol. 24, 2899–2907 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Downer, J.D., Niwa, M. & Sutter, M.L. Task engagement selectively modulates neural correlations in primary auditory cortex. J. Neurosci. 35, 7565–7574 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Qi, X.L. & Constantinidis, C. Correlated discharges in the primate prefrontal cortex before and after working memory training. Eur. J. Neurosci. 36, 3538–3548 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Cohen, M.R. & Newsome, W.T. Context-dependent changes in functional circuitry in visual area MT. Neuron 60, 162–173 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Miura, K., Mainen, Z.F. & Uchida, N. Odor representations in olfactory cortex: distributed rate coding and decorrelated population activity. Neuron 74, 1087–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jeanne, J.M., Sharpee, T.O. & Gentner, T.Q. Associative learning enhances population coding by inverting interneuronal correlation patterns. Neuron 78, 352–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Biederlack, J. et al. Brightness induction: rate enhancement and neuronal synchronization as complementary codes. Neuron 52, 1073–1083 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Yu, J. & Ferster, D. Membrane potential synchrony in primary visual cortex during sensory stimulation. Neuron 68, 1187–1201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Poulet, J.F. & Petersen, C.C. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Tan, A.Y., Chen, Y., Scholl, B., Seidemann, E. & Priebe, N.J. Sensory stimulation shifts visual cortex from synchronous to asynchronous states. Nature 509, 226–229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by National Science Foundation grants NSF-DMS-1313225 (B.D.), NSF-DMS-1517082 (B.D.), NIH-CRCNS R01DC015139-01ZRG1 (B.D.), NSF-DMS-1122094 (K.J.), NSF-DMS-1517629 (K.J.) and NSF-DMS-1517828 (R.R.), National Institute of Health grant NIH:1F32DC014387 (A.L.-K.), a grant from the Simons Foundation collaboration on the global brain (B.D.), and a Simons Foundation fellowship (K.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent Doiron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Mathematical Note (PDF 246 kb)

Supplementary Methods Checklist

(PDF 348 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doiron, B., Litwin-Kumar, A., Rosenbaum, R. et al. The mechanics of state-dependent neural correlations. Nat Neurosci 19, 383–393 (2016). https://doi.org/10.1038/nn.4242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing