Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity

Abstract

Acid-sensing ion channel 1A (ASIC1A) is abundant in the nucleus accumbens (NAc), a region known for its role in addiction. Because ASIC1A has been suggested to promote associative learning, we hypothesized that disrupting ASIC1A in the NAc would reduce drug-associated learning and memory. However, contrary to this hypothesis, we found that disrupting ASIC1A in the mouse NAc increased cocaine-conditioned place preference, suggesting an unexpected role for ASIC1A in addiction-related behavior. Moreover, overexpressing ASIC1A in rat NAc reduced cocaine self-administration. Investigating the underlying mechanisms, we identified a previously unknown postsynaptic current during neurotransmission that was mediated by ASIC1A and ASIC2 and thus well positioned to regulate synapse structure and function. Consistent with this possibility, disrupting ASIC1A altered dendritic spine density and glutamate receptor function, and increased cocaine-evoked plasticity, which resemble changes previously associated with cocaine-induced behavior. Together, these data suggest that ASIC1A inhibits the plasticity underlying addiction-related behavior and raise the possibility of developing therapies for drug addiction by targeting ASIC-dependent neurotransmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ASIC1A is necessary for acid-evoked currents in the NAc and disrupting ASIC1A increases conditioned place preference to cocaine and morphine.
Figure 2: Restoring ASIC1A in the NAc re-establishes acid-evoked currents and reduces cocaine conditioned place preference.
Figure 3: ASIC1A and ASIC2 contribute to synaptic currents in NAc.
Figure 4: Reducing buffering capacity and inhibiting or deleting CA-IV increased ASIC EPSC in NAc.
Figure 5: Loss of ASIC1A increases dendritic spine density and mEPSC frequency in the NAc.
Figure 6: Loss of ASIC1A increases inward rectification of AMPA-mediated EPSCs, which is normalized by re-establishing ASIC1A expression in the NAc.
Figure 7: ASIC1A disruption increases the AMPA-to-NMDA ratio in NAc, which is acutely reversed by single cocaine dose.
Figure 8: Overexpressing ASIC1A in the rat NAc attenuates cocaine self-administration.

Similar content being viewed by others

References

  1. Russo, S.J. et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 33, 267–276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luscher, C. & Malenka, R.C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69, 650–663 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kalivas, P.W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 10, 561–572 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Wemmie, J.A., Taugher, R.J. & Kreple, C.J. Acid-sensing ion channels in pain and disease. Nat. Rev. Neurosci. 14, 461–471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jasti, J., Furukawa, H., Gonzales, E.B. & Gouaux, E. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449, 316–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Hesselager, M., Timmermann, D.B. & Ahring, P.K. pH-dependency and desensitization kinetics of heterologously expressed combinations of ASIC subunits. J. Biol. Chem. 279, 11006–11015 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Benson, C.J. et al. Heteromultimerics of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc. Natl. Acad. Sci. USA 99, 2338–2343 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Askwith, C.C., Wemmie, J.A., Price, M.P., Rokhlina, T. & Welsh, M.J. Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J. Biol. Chem. 279, 18296–18305 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Wemmie, J.A. et al. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34, 463–477 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Wemmie, J.A. et al. Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 23, 5496–5502 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ziemann, A.E. et al. The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 139, 1012–1021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wemmie, J.A. et al. Overexpression of acid-sensing ion channel 1a in transgenic mice increases acquired fear-related behavior. Proc. Natl. Acad. Sci. USA 101, 3621–3626 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zha, X.M., Wemmie, J.A., Green, S.H. & Welsh, M.J. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines. Proc. Natl. Acad. Sci. USA 103, 16556–16561 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zha, X.M. et al. ASIC2 subunits target acid-sensing ion channels to the synapse via an association with PSD-95. J. Neurosci. 29, 8438–8446 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baron, A. et al. Protein kinase C stimulates the acid-sensing ion channel ASIC2a via the PDZ domain-containing protein PICK1. J. Biol. Chem. 277, 50463–50468 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, P.Y. et al. Acid-sensing ion channel-1a is not required for normal hippocampal LTP and spatial memory. J. Neurosci. 33, 1828–1832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho, J.H. & Askwith, C.C. Presynaptic release probability is increased in hippocampal neurons from ASIC1 knockout mice. J. Neurophysiol. 99, 426–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Alvarez de la Rosa, D. et al. Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J. Physiol. 546, 77–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Huston, J.P., Silva, M.A., Topic, B. & Muller, C.P. What's conditioned in conditioned place preference? Trends Pharmacol. Sci. 34, 162–166 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Napier, T.C., Herrold, A.A. & de Wit, H. Using conditioned place preference to identify relapse prevention medications. Neurosci. Biobehav. Rev. 37, 2081–2086 (2013).

    Article  PubMed  Google Scholar 

  21. White, N.M., Chai, S.C. & Hamdani, S. Learning the morphine conditioned cue preference: cue configuration determines effects of lesions. Pharmacol. Biochem. Behav. 81, 786–796 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Coryell, M.W. et al. Restoring Acid-sensing ion channel-1a in the amygdala of knock-out mice rescues fear memory but not unconditioned fear responses. J. Neurosci. 28, 13738–13741 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeVries, S.H. Exocytosed protons feedback to suppress the Ca2+ current in mammalian cone photoreceptors. Neuron 32, 1107–1117 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  PubMed  Google Scholar 

  25. Palmer, M.J., Hull, C., Vigh, J. & von Gersdorff, H. Synaptic cleft acidification and modulation of short-term depression by exocytosed protons in retinal bipolar cells. J. Neurosci. 23, 11332–11341 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vessey, J.P. et al. Proton-mediated feedback inhibition of presynaptic calcium channels at the cone photoreceptor synapse. J. Neurosci. 25, 4108–4117 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 386, 173–177 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Krishtal, O.A., Osipchuk, Y.V., Shelest, T.N. & Smirnoff, S.V. Rapid extracellular pH transients related to synaptic transmission in rat hippocampal slices. Brain Res. 436, 352–356 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Gillessen, T. & Alzheimer, C. Amplification of EPSPs by low Ni2+- and amiloride-sensitive Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Neurophysiol. 77, 1639–1643 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Manev, H., Bertolino, M. & DeErausquin, G. Amiloride blocks glutamate-operated cationic channels and protects neurons in culture from glutamate-induced death. Neuropharmacology 29, 1103–1110 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Price, M.P. et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, 1007–1011 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Escoubas, P. et al. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem. 275, 25116–25121 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Sherwood, T.W., Lee, K.G., Gormley, M.G. & Askwith, C.C. Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J. Neurosci. 31, 9723–9734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shah, G.N. et al. Carbonic anhydrase IV and XIV knockout mice: roles of the respective carbonic anhydrases in buffering the extracellular space in brain. Proc. Natl. Acad. Sci. USA 102, 16771–16776 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harris, K.M. & Kater, S.B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Dietz, D.M. et al. Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nat. Neurosci. 15, 891–896 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conrad, K.L. et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454, 118–121 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mameli, M. et al. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat. Neurosci. 12, 1036–1041 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Kourrich, S., Rothwell, P.E., Klug, J.R. & Thomas, M.J. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J. Neurosci. 27, 7921–7928 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moussawi, K. et al. Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. Proc. Natl. Acad. Sci. USA 108, 385–390 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Eisch, A.J. et al. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol. Psychiatry 54, 994–1005 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Shirayama, Y., Chen, A.C., Nakagawa, S., Russell, D.S. & Duman, R.S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miesenbock, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Beg, A.A., Ernstrom, G.G., Nix, P., Davis, M.W. & Jorgensen, E.M. Protons act as a transmitter for muscle contraction in C. elegans. Cell 132, 149–160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeng, W.Z. & Xu, T.L. Proton production, regulation and pathophysiological roles in the mammalian brain. Neurosci. Bull. 28, 1–13 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zha, X.M. Acid-sensing ion channels: trafficking and synaptic function. Mol. Brain 6, 1 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, K.W. et al. Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc. Natl. Acad. Sci. USA 103, 3399–3404 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Golden, S.A. & Russo, S.J. Mechanisms of psychostimulant-induced structural plasticity. Cold Spring Harb. Perspect. Med. 2, a011957 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Christoffel, D.J. et al. IkappaB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J. Neurosci. 31, 314–321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang, Q., Wang, C.M., Fibuch, E.E., Wang, J.Q. & Chu, X.P. Differential regulation of locomotor activity to acute and chronic cocaine administration by acid-sensing ion channel 1a and 2 in adult mice. Neuroscience 246, 170–178 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Radley, J.J., Anderson, R.M., Hamilton, B.A., Alcock, J.A. & Romig-Martin, S.A. Chronic stress-induced alterations of dendritic spine subtypes predict functional decrements in an hypothalamo-pituitary-adrenal-inhibitory prefrontal circuit. J. Neurosci. 33, 14379–14391 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Radley, J.J. et al. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J. Comp. Neurol. 507, 1141–1150 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R. & Wearne, S.L. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3, e1997 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. LaLumiere, R.T., Smith, K.C. & Kalivas, P.W. Neural circuit competition in cocaine-seeking: roles of the infralimbic cortex and nucleus accumbens shell. Eur. J. Neurosci. 35, 614–622 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Lutter and M. Price for critically reading the manuscript. We also thank M. Price for providing Asic2−/− mice. We thank the University of Iowa Gene Transfer Vector Core and Central Microscopy Research Facility. J.A.W. was supported by the Department of Veterans Affairs (Merit Award), the National Institute of Mental Health (5R01MH085724), the US National Institutes of Health Heart, Lung, and Blood Institute (R01HL113863) and a NARSAD Independent Investigator Award. J.J.R. was supported by the US National Institutes of Health (MH095972). R.T.L. was supported by the US National Institutes of Health (DA034684). C.J.K. was supported by the University of Iowa Interdisciplinary Training Program in Pain Research National Institute of Neurological Disorders and Stroke T32NS045549. M.J.W. receives funding from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors read and critiqued the manuscript. C.J.K., Y.L., R.J.T., A.L.S.-G., M.S., Y.W., A.G., R.F., C.V.C., L.P.S. and J.J.R. performed the experiments. C.J.K., Y.L., J.D., M.J.W., J.J.R., R.T.L. and J.A.W. designed the experiments. C.J.K., Y.L., R.T.L. and J.A.W. wrote the manuscript. R.T.L. and J.A.W. provided funding for the experiments.

Corresponding author

Correspondence to John A Wemmie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Injection of AAV-Cre into the NAc reduces ASIC1A protein expression and acid-evoked currents.

(a) All protein used for the blot was obtained from the nucleus accumbens or COS cells. ASIC1A (in red) is present in COS cells, Asic1a+/+ mice, Asic1aloxP/loxP mice after AAV-eGFP delivery. ASIC1A labeling is diminished in Asic1aloxP/loxP mice after AAV-Cre delivery, and absent in Asic1a−/− mice. GAPDH (in green) was used as a loading control. (b) Delivery of AAV-Cre into the NAc of Asic1aloxP/loxP mice nearly abolishes acid-evoked currents (***p<0.001, Student's t test with Welch's correction, n=7-10 neurons).

Supplementary Figure 2 Restoring ASIC1A in the dorsal hippocampus does not reduce cocaine CPP.

In contrast to expressing ASIC1A in the NAc, restoring ASIC1A expression to the dorsal hippocampus of Asic1a−/−mice with AAV-Asic1a does not reduce conditioned place preference to cocaine (10 mg/kg) (p = 0.15, Student;s t test, n=7-9).

Supplementary Figure 3 Cocaine administration does not alter pH in the NAc, as measured by fiberoptic pH sensor in anesthetized mice.

Image shows continuous pH recording in the NAc during 20% CO2 inhalation and cocaine injection (10 mg/kg). 20% CO2 caused a robust acidosis, while cocaine administration did not alter pH.

Supplementary Figure 4 Amiloride inhibits evoked EPSCs in wild-type and Asic1a−/− mice.

(a) Representative traces of EPSCs before (black) and after (red) addition of amiloride to the slice bath. (b) Quantification of residual EPSC after amiloride application, normalized to the unblocked EPSC peak. A two-way ANOVA reveals a significant effect of amiloride (F(1, 24) = 199, p<0.001, n=5-8 neurons), but no significant effect of genotype (F(1, 24) = 0.2369, p>0.05, n=5-8 neurons), and no amiloride by genotype interaction (F(1, 24) = 0.2568, p>0.05, n=5-8 neurons). Planned post-hoc tests reveal a significant reduction in the peak EPSC amplitude after amiloride treatment in Asic1a+/+ (***p<0.001) and Asic1a−/− mice (***p<0.001, Sidak's multiple comparisons test).

Supplementary Figure 5 The relationship between the total evoked EPSC and the residual evoked EPSC in the presence of AP5, CNQX and picrotoxin.

The relative proportion of the residual amiloride sensitive synaptic current does not change with changes in amplitude of evoked EPSCs. The red line illustrates the linear fit of the result: y = 0.0004x + 5.1315, r2 = 0.0465.

Supplementary Figure 6 Loss of ASIC1A does not change mEPSC amplitude in the NAc.

(a) Cumulative fraction of mEPSC amplitude, and histogram of mEPSC amplitude (inset) in Asic1a+/+ and Asic1a−/− mice. (b) Cumulative fraction of mEPSC amplitude, and histogram of mEPSC amplitude (inset) in Asic1a−/− mice injected with AAV-Asic1a or AAV-eGFP. (c) mEPSC amplitude is unchanged in Asic1a−/− mice or Asic1a−/− mice injected with AAV-Asic1a. A one-way ANOVA revealed no significant differences between groups (F(3, 56) = 1.359, p>0.05, n=11-18 neurons).

Supplementary Figure 7 Loss of ASIC1A does not alter paired pulse facilitation (PPF) in the NAc.

(a) Sample traces showing PPF in the NAc of Asic1a+/+ and Asic1a−/− mice. (b) Loss of ASIC1A does not alter PPF in the NAc (Student's t-test, p>0.05, n=9 neurons)

Supplementary Figure 8 Loss of ASIC1A does not alter body weight.

Body weight does not differ significantly between Asic1a+/+ and Asic1a−/− mice. A two-way ANOVA revealed a significant effect of sex (F(1, 122)= 192.7, p<0.001), but not genotype (F(1, 122)= 0.1084, p>0.05). Additionally, there was no significant sex by genotype interaction (F(1, 122)= 2.536, p>0.05).

Supplementary Figure 9 A diagram illustrating production strategy of our Asic1aloxP/loxP mice.

The top allele represents the portion of Asic1a encompassing exons 1, 2, and 3. The targeting vector, labeled “Recombinant” was obtained through standard molecular cloning and contained loxP sites flanking exon 2 and a neomycin resistance cassette. The neomycin resistance cassette was flanked by FRT and removed at the embryonic stem cell stage by flippase transfection. The resulting allele contains exon 2 flanked by loxP sites, allowing for specific deletion using Cre recombinase.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 1914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreple, C., Lu, Y., Taugher, R. et al. Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nat Neurosci 17, 1083–1091 (2014). https://doi.org/10.1038/nn.3750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing