Article | Published:

Spontaneous fluctuations in neural responses to heartbeats predict visual detection

Nature Neuroscience volume 17, pages 612618 (2014) | Download Citation

Abstract

Spontaneous fluctuations of ongoing neural activity substantially affect sensory and cognitive performance. Because bodily signals are constantly relayed up to the neocortex, neural responses to bodily signals are likely to shape ongoing activity. Here, using magnetoencephalography, we show that in humans, neural events locked to heartbeats before stimulus onset predict the detection of a faint visual grating in the posterior right inferior parietal lobule and the ventral anterior cingulate cortex, two regions that have multiple functional correlates and that belong to the same resting-state network. Neither fluctuations in measured bodily parameters nor overall cortical excitability could account for this finding. Neural events locked to heartbeats therefore shape visual conscious experience, potentially by contributing to the neural maps of the organism that might underlie subjectivity. Beyond conscious vision, our results show that neural events locked to a basic physiological input such as heartbeats underlie behaviorally relevant differential activation in multifunctional cortical areas.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).

  2. 2.

    & Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J. Cogn. Neurosci. 16, 1484–1492 (2004).

  3. 3.

    et al. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 94, 1904–1911 (2005).

  4. 4.

    & Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008).

  5. 5.

    & State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex. J. Neurosci. 31, 6414–6420 (2011).

  6. 6.

    Spontaneous and task-evoked brain activity negatively interact. J. Neurosci. 33, 4672–4682 (2013).

  7. 7.

    , , , & Prestimulus oscillations enhance psychophysical performance in humans. J. Neurosci. 24, 10186–10190 (2004).

  8. 8.

    et al. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc. Natl. Acad. Sci. USA 104, 12187–12192 (2007).

  9. 9.

    , & Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. J. Neurosci. 29, 13410–13417 (2009).

  10. 10.

    et al. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc. Natl. Acad. Sci. USA 110, 3585–3590 (2013).

  11. 11.

    , & Beta- and gamma-band EEG power predicts illusory auditory continuity perception. J. Neurophysiol. 108, 2717–2724 (2012).

  12. 12.

    & Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

  13. 13.

    , & Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011).

  14. 14.

    Multisensory brain mechanisms of bodily self-consciousness. Nat. Rev. Neurosci. 13, 556–571 (2012).

  15. 15.

    How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

  16. 16.

    Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neurosci. 12, 453–466 (2011).

  17. 17.

    & Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).

  18. 18.

    & The nature of feelings: evolutionary and neurobiological origins. Nat. Rev. Neurosci. 14, 143–152 (2013).

  19. 19.

    , , & Specifying the self for cognitive neuroscience. Trends Cogn. Sci. 15, 104–112 (2011).

  20. 20.

    , & Task-independent functional brain activity correlation with skin conductance changes: an fMRI study. Neuroimage 17, 1797–1806 (2002).

  21. 21.

    , , , & Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: a physiological account of a “default mode” of brain function. Neuroimage 22, 243–251 (2004).

  22. 22.

    et al. Spontaneous brain activity relates to autonomic arousal. J. Neurosci. 32, 11176–11186 (2012).

  23. 23.

    , , , & Ventral medial prefrontal cortex and cardiovagal control in conscious humans. Neuroimage 35, 698–708 (2007).

  24. 24.

    , , & The relation of ventromedial prefrontal cortex activity and heart rate fluctuations at rest. Eur. J. Neurosci. 30, 2205–2210 (2009).

  25. 25.

    & Event-related brain potentials and the processing of cardiac activity. Biol. Psychol. 42, 75–85 (1996).

  26. 26.

    et al. A cortical potential reflecting cardiac function. Proc. Natl. Acad. Sci. USA 104, 6818–6823 (2007).

  27. 27.

    , , & Heart cycle-related effects on event-related potentials, spectral power changes, and connectivity patterns in the human ECoG. Neuroimage 81, 178–190 (2013).

  28. 28.

    , & Heartbeat evoked potentials (HEP): topography and influence of cardiac awareness and focus of attention. Electroencephalogr. Clin. Neurophysiol. 88, 163–172 (1993).

  29. 29.

    , & Association between interoception and empathy: evidence from heart-beat evoked brain potential. Int. J. Psychophysiol. 79, 259–265 (2011).

  30. 30.

    & Basic and Clinical Neurocardiology (Oxford University Press, Oxford, 2004).

  31. 31.

    & Visceral circuits and cingulate-mediated autonomic functions. in Cingulate Neurobiology and Disease (ed. Vogt, B.A.) 220–235 (Oxford University Press, Oxford, 2009).

  32. 32.

    & Studies of heart rate and other bodily processes in sensorimotor behavior. in Cardiovascular Psychophysiology (ed. Obrist, P.A., Black, A.H., Brener, J. & DiCara, L.) 538–564 (Aldine Press, Chicago, 1974).

  33. 33.

    , , & Topography and morphology of heart action-related EEG potentials. Electroencephalogr. Clin. Neurophysiol. 108, 299–305 (1998).

  34. 34.

    , & Contributions of anterior cingulate cortex to behaviour. Brain 118, 279–306 (1995).

  35. 35.

    et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005).

  36. 36.

    , , , & Neural systems supporting interoceptive awareness. Nat. Neurosci. 7, 189–195 (2004).

  37. 37.

    & Lapses in alertness: coherence of fluctuations in performance and EEG spectrum. Electroencephalogr. Clin. Neurophysiol. 86, 23–35 (1993).

  38. 38.

    et al. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study. J. Neurosci. 30, 10243–10250 (2010).

  39. 39.

    & The neural subjective frame: from bodily signals to perceptual consciousness. Phil. Trans. R. Soc. B (in the press).

  40. 40.

    & Towards a neurobiological theory of consciousness. Semin. Neurosci. 2, 263–275 (1990).

  41. 41.

    & Neural correlates of the first-person-perspective. Trends Cogn. Sci. 7, 38–42 (2003).

  42. 42.

    & Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat. Neurosci. 4, 546–550 (2001).

  43. 43.

    et al. Movement intention after parietal cortex stimulation in humans. Science 324, 811–813 (2009).

  44. 44.

    et al. Parietal cortex and representation of the mental Self. Proc. Natl. Acad. Sci. USA 101, 6827–6832 (2004).

  45. 45.

    et al. Social comparison affects reward-related brain activity in the human ventral striatum. Science 318, 1305–1308 (2007).

  46. 46.

    , , , & The brain basis of emotion: a meta-analytic review. Behav. Brain Sci. 35, 121–143 (2012).

  47. 47.

    & How is our self related to midline regions and the default-mode network? Neuroimage 57, 1221–1233 (2011).

  48. 48.

    & The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10, 1625–1633 (2007).

  49. 49.

    et al. Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J. Neurosci. 29, 14496–14505 (2009).

  50. 50.

    , , , & Functional-anatomic fractionation of the brain's default network. Neuron 65, 550–562 (2010).

  51. 51.

    & Detection Theory: a User's Guide (Lawrence Erlbaum Associates, 2005).

  52. 52.

    , , , & Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011).

  53. 53.

    et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002).

  54. 54.

    , , & FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

  55. 55.

    , , & Automatic detection of respiration rate from ambulatory single-lead ECG. IEEE Trans. Inf. Technol. Biomed. 13, 890–896 (2009).

  56. 56.

    , & The phase of ongoing EEG oscillations predicts visual perception. J. Neurosci. 29, 7869–7876 (2009).

  57. 57.

    & Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).

Download references

Acknowledgements

This work was supported by Agence Nationale de la Recherche grants ANR-BLAN-12-BSH2-0002-01 to C.T.B., ANR-10-LABX-0087 IEC and ANR-10-IDEX-0001-02 PSL*. We thank E. Koechlin for useful suggestions on the manuscript and C. Gitton for excellent technical support during data acquisition.

Author information

Affiliations

  1. Cognitive Neuroscience Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM)–École Normale Supérieure (ENS), Paris, France.

    • Hyeong-Dong Park
    • , Stéphanie Correia
    •  & Catherine Tallon-Baudry
  2. Cenir, Centre National de la Recherche Scientifique (CNRS)–Université Pierre-et-Marie-Curie (UPMC)-INSERM, Paris, France.

    • Antoine Ducorps

Authors

  1. Search for Hyeong-Dong Park in:

  2. Search for Stéphanie Correia in:

  3. Search for Antoine Ducorps in:

  4. Search for Catherine Tallon-Baudry in:

Contributions

H.-D.P. and C.T.-B. designed the experiment. H.-D.P. and S.C. acquired the data. H.-D.P., A.D. and C.T.-B. analyzed the data. H.-D.P. and C.T.-B. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Catherine Tallon-Baudry.

Integrated supplementary information

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–7 and Supplementary Tables 1–3

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nn.3671

Further reading