Optogenetic pharmacology for control of native neuronal signaling proteins


The optical neuroscience revolution is transforming how we study neural circuits. By providing a precise way to manipulate endogenous neuronal signaling proteins, it also has the potential to transform our understanding of molecular neuroscience. Recent advances in chemical biology have produced light-sensitive compounds that photoregulate a wide variety of proteins underlying signaling between and within neurons. Chemical tools for optopharmacology include caged agonists and antagonists and reversibly photoswitchable ligands. These reagents act on voltage-gated ion channels and neurotransmitter receptors, enabling control of neuronal signaling with a high degree of spatial and temporal precision. By covalently attaching photoswitch molecules to genetically tagged proteins, the newly emerging methodology of optogenetic pharmacology allows biochemically precise control in targeted subsets of neurons. Now that the tools for manipulating endogenous neuronal signaling proteins are available, they can be implemented in vivo to enhance our understanding of the molecular bases of brain function and dysfunctions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Photochemical tools for controlling neural function.
Figure 2: Three methods of photocontrol for mapping mechanisms of brain function.
Figure 3: Optogenetic pharmacology enables photocontrol of ion channels and neurotransmitter receptors in mouse hippocampal neurons.
Figure 4: Expression options for optogenetic pharmacology.


  1. 1

    Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Ellis-Davies, G.C.R. Two-photon microscopy for chemical neuroscience. ACS Chem. Neurosci. 2, 185–197 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Fehrentz, T., Schönberger, M. & Trauner, D. Optochemical genetics. Angew. Chem. Int. Ed. Engl. 50, 12156–12182 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Shepherd, G.M.G., Pologruto, T.A. & Svoboda, K. Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38, 277–289 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Lutz, C. et al. Holographic photolysis of caged neurotransmitters. Nat. Methods 5, 821–827 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Canepari, M., Nelson, L.L., Papageorgiou, G.G., Corrie, J.E.T. & Ogden, D.D. Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters. J. Neurosci. Methods 112, 29–42 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Callaway, E.M. & Katz, L.C. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA 90, 7661–7665 (1993).

    CAS  Article  Google Scholar 

  9. 9

    Carter, A.G. & Sabatini, B.L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Donato, L. et al. Water-soluble, donor-acceptor biphenyl derivatives in the 2-(o-nitrophenyl)propyl series: highly efficient two-photon uncaging of the neurotransmitter γ-aminobutyric acid at λ = 800nm. Angew. Chem. Int. Ed. Engl. 51, 1840–1843 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Rial Verde, E.M., Zayat, L., Etchenique, R. & Yuste, R. Photorelease of GABA with visible light using an inorganic caging group. Front. Neural Circuits 2, 2 (2008).

    Article  Google Scholar 

  12. 12

    Fino, E. et al. RuBi-glutamate: two-photon and visible-light photoactivation of neurons and dendritic spines. Front. Neural Circuits 3, 2 (2009).

    Article  Google Scholar 

  13. 13

    Banghart, M.R. & Sabatini, B.L. Photoactivatable neuropeptides for spatiotemporally precise delivery of opioids in neural tissue. Neuron 73, 249–259 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Palma-Cerda, F. et al. New caged neurotransmitter analogs selective for glutamate receptor subtypes based on methoxynitroindoline and nitrophenylethoxycarbonyl caging groups. Neuropharmacology 63, 624–634 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Mourot, A. et al. Tuning photochromic ion channel blockers. ACS Chem. Neurosci. 2, 536–543 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Fortin, D.L. et al. Photochemical control of endogenous ion channels and cellular excitability. Nat. Methods 5, 331–338 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Banghart, M.R. et al. Photochromic blockers of voltage-gated potassium channels. Angew. Chem. Int. Ed. Engl. 48, 9097–9101 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Polosukhina, A. et al. Photochemical restoration of visual responses in blind mice. Neuron 75, 271–282 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Mourot, A. et al. Rapid optical control of nociception with an ion-channel photoswitch. Nat. Methods 9, 396–402 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Yue, L. et al. Robust photoregulation of GABAA receptors by allosteric modulation with a propofol analogue. Nature Commun. 3, 1095 (2012).

    Article  Google Scholar 

  21. 21

    Volgraf, M. et al. Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J. Am. Chem. Soc. 129, 260–261 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Adesnik, H., Nicoll, R.A. & England, P.M. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron 48, 977–985 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Kokel, D. et al. Photochemical activation of TRPA1 channels in neurons and animals. Nat. Chem. Biol. 9, 257–263 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Banghart, M., Borges, K., Isacoff, E.Y., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Fortin, D.L. et al. Optogenetic photochemical control of designer K+ channels in mammalian neurons. J. Neurophysiol. 106, 488–496 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Sandoz, G., Levitz, J., Kramer, R.H. & Isacoff, E.Y. Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABAB signaling. Neuron 74, 1005–1014 (2012).

    CAS  Article  Google Scholar 

  27. 27

    Baranauskas, G., Tkatch, T., Nagata, K., Yeh, J.Z. & Surmeier, D.J. Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Nat. Neurosci. 6, 258–266 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Wyart, C. et al. Optogenetic dissection of a behavioral module in the vertebrate spinal cord. Nature 461, 407–410 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Caporale, N. et al. LiGluR restores visual responses in rodent models of inherited blindness. Mol. Ther. 19, 1212–1219 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Howe, J.R. Homomeric and heteromeric ion channels formed from the kainate-type subunits GluR6 and KA2 have very small, but different, unitary conductances. J. Neurophysiol. 76, 510–519 (1996).

    CAS  Article  Google Scholar 

  33. 33

    Feldbauer, K. et al. Channelrhodopsin-2 is a leaky proton pump. Proc. Natl. Acad. Sci. USA 106, 12317–12322 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Lester, H.A., Krouse, M.E.M., Nass, M.M.M., Wassermann, N.H. & Erlanger, B.F. A covalently bound photoisomerizable agonist: comparison with reversibly bound agonists at Electrophorus electroplaques. J. Gen. Physiol. 75, 207–232 (1980).

    CAS  Article  Google Scholar 

  35. 35

    Tochitsky, I. et al. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors. Nat. Chem. 4, 105–111 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signaling. Nature 458, 1025–1029 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Levitz, J. et al. Optical control of metabotropic glutamate receptors. Nat. Neurosci. (2013).

  38. 38

    Schröder-Lang, S. et al. Fast manipulation of cellular cAMP level by light in vivo. Nat. Methods 4, 39–42 (2007).

    Article  Google Scholar 

  39. 39

    Wu, Y.I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).

    CAS  Article  Google Scholar 

  41. 41

    Zhou, X.X., Chung, H.K., Lam, A.J. & Lin, M.Z. Optical control of protein activity by fluorescent protein domains. Science 338, 810–814 (2012).

    CAS  Article  Google Scholar 

  42. 42

    Müller, K. et al. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41, e77 (2013).

    Article  Google Scholar 

  43. 43

    Stuber, G.D., Hnasko, T.S., Britt, J.P., Edwards, R.H. & Bonci, A. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum co-release glutamate. J. Neurosci. 30, 8229–8233 (2010).

    CAS  Article  Google Scholar 

  44. 44

    Carter, M.E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 1526–1533 (2010).

    CAS  Article  Google Scholar 

  45. 45

    Donaldson, Z.R., Nautiyal, K.M., Ahmari, S.E. & Hen, R. Genetic approaches for understanding the role of serotonin receptors in mood and behavior. Curr. Opin. Neurobiol. 23, 399–406 (2013).

    CAS  Article  Google Scholar 

  46. 46

    Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8, 45–56 (2007).

    CAS  Article  Google Scholar 

  47. 47

    Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z.J. & Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 490, 226–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat. Neurosci. 15, 769–775 (2012).

    CAS  Article  Google Scholar 

  49. 49

    Noguchi, J. et al. In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice. J. Physiol. (Lond.) 589, 2447–2457 (2011).

    CAS  Article  Google Scholar 

  50. 50

    Stein, M. et al. Azo-propofols: photochromic potentiators of GABAA receptors. Angew. Chem. Int. Ed. Engl. 51, 10500–10504 (2012).

    CAS  Article  Google Scholar 

Download references


This work was supported by grants to R.H.K. from the National Eye Institute and the US National Institutes of Health.

Author information



Corresponding author

Correspondence to Richard H Kramer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kramer, R., Mourot, A. & Adesnik, H. Optogenetic pharmacology for control of native neuronal signaling proteins. Nat Neurosci 16, 816–823 (2013). https://doi.org/10.1038/nn.3424

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing