Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling

Abstract

The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates activity-dependent depression of excitatory neurotransmission at central synapses, but the molecular regulation of 2-AG synthesis is not well understood. Here we identify a functional interaction between the 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα) and calcium/calmodulin dependent protein kinase II (CaMKII). Activated CaMKII interacted with the C-terminal domain of DGLα, phosphorylated two serine residues and inhibited DGLα activity. Consistent with an inhibitory role for CaMKII in 2-AG synthesis, in vivo genetic inhibition of CaMKII increased striatal DGL activity and basal levels of 2-AG, and CaMKII inhibition augmented short-term retrograde endocannabinoid signaling at striatal glutamatergic synapses. Lastly, blockade of 2-AG breakdown using concentrations of JZL-184 that have no effect in wild-type mice produced a hypolocomotor response in mice with reduced CaMKII activity. These findings provide mechanistic insights into the molecular regulation of striatal endocannabinoid signaling with implications for physiological control of motor function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DGLα interacts with CaMKII.
Figure 2: CaMKIIα selectively phosphorylates DGLα at Ser782 and Ser808.
Figure 3: CaMKII inhibits DGL activity.
Figure 4: Inhibiting CaMKII or preventing CaMKII autophosphorylation at Thr286 enhances endocannabinoid-mediated retrograde transmission in striatal MSNs.
Figure 5: Inhibition of 2-AG breakdown selectively suppresses motor activity in Camk2aT286A knock-in mice (KI).

Similar content being viewed by others

References

  1. Graybiel, A.M., Aosaki, T., Flaherty, A.W. & Kimura, M. The basal ganglia and adaptive motor control. Science 265, 1826–1831 (1994).

    CAS  PubMed  Google Scholar 

  2. Packard, M.G. & Knowlton, B.J. Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 25, 563–593 (2002).

    CAS  PubMed  Google Scholar 

  3. Kravitz, A.V., Tye, L.D. & Kreitzer, A.C. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816–818 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gerdeman, G.L., Ronesi, J. & Lovinger, D.M. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat. Neurosci. 5, 446–451 (2002).

    CAS  PubMed  Google Scholar 

  5. Kreitzer, A.C. & Malenka, R.C. Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J. Neurosci. 25, 10537–10545 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shen, Y.S., Gao, H. & Yao, H. Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. J. Comput. Neurosci. 18, 25–39 (2005).

    PubMed  Google Scholar 

  7. Tanimura, A. et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65, 320–327 (2010).

    CAS  PubMed  Google Scholar 

  8. Wilson, R.I., Kunos, G. & Nicoll, R.A. Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31, 453–462 (2001).

    CAS  PubMed  Google Scholar 

  9. Di Filippo, M. et al. The endocannabinoid system in Parkinson's disease. Curr. Pharm. Des. 14, 2337–2347 (2008).

    CAS  PubMed  Google Scholar 

  10. Muller-Vahl, K.R., Schneider, U., Kolbe, H. & Emrich, H.M. Treatment of Tourette's syndrome with delta-9-tetrahydrocannabinol. Am. J. Psychiatry 156, 495 (1999).

    CAS  PubMed  Google Scholar 

  11. Blazquez, C. et al. Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain 134, 119–136 (2011).

    PubMed  Google Scholar 

  12. Devane, W.A. & Axelrod, J. Enzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes. Proc. Natl. Acad. Sci. USA 91, 6698–6701 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    CAS  PubMed  Google Scholar 

  14. Ade, K.K. & Lovinger, D.M. Anandamide regulates postnatal development of long-term synaptic plasticity in the rat dorsolateral striatum. J. Neurosci. 27, 2403–2409 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Oudin, M.J., Hobbs, C. & Doherty, P. DAGL-dependent endocannabinoid signalling: roles in axonal pathfinding, synaptic plasticity and adult neurogenesis. Eur. J. Neurosci. 34, 1634–1646 (2011).

    PubMed  Google Scholar 

  16. Yoshino, H. et al. Postsynaptic diacylglycerol lipase alpha mediates retrograde endocannabinoid suppression of inhibition in mouse prefrontal cortex. J. Physiol. (Lond.) 589, 4857–4884 (2011).

    CAS  Google Scholar 

  17. Gao, Y. et al. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J. Neurosci. 30, 2017–2024 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bisogno, T. et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163, 463–468 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jung, K.M. et al. A key role for diacylglycerol lipase-alpha in metabotropic glutamate receptor-dependent endocannabinoid mobilization. Mol. Pharmacol. 72, 612–621 (2007).

    CAS  PubMed  Google Scholar 

  20. Uchigashima, M. et al. Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. J. Neurosci. 27, 3663–3676 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lerner, T.N. & Kreitzer, A.C. RGS4 is required for dopaminergic control of striatal LTD and susceptibility to Parkinsonian motor deficits. Neuron 73, 347–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lerner, T.N., Horne, E.A., Stella, N. & Kreitzer, A.C. Endocannabinoid signaling mediates psychomotor activation by adenosine A2A antagonists. J. Neurosci. 30, 2160–2164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilson, R.I. & Nicoll, R.A. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410, 588–592 (2001).

    CAS  PubMed  Google Scholar 

  24. Kreitzer, A.C. & Regehr, W.G. Retrograde signaling by endocannabinoids. Curr. Opin. Neurobiol. 12, 324–330 (2002).

    CAS  PubMed  Google Scholar 

  25. Kreitzer, A.C. & Regehr, W.G. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29, 717–727 (2001).

    CAS  PubMed  Google Scholar 

  26. Ohno-Shosaku, T., Maejima, T. & Kano, M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29, 729–738 (2001).

    CAS  PubMed  Google Scholar 

  27. Hashimotodani, Y. et al. Phospholipase Cbeta serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron 45, 257–268 (2005).

    CAS  PubMed  Google Scholar 

  28. Maejima, T. et al. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J. Neurosci. 25, 6826–6835 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maejima, T., Ohno-Shosaku, T. & Kano, M. Endogenous cannabinoid as a retrograde messenger from depolarized postsynaptic neurons to presynaptic terminals. Neurosci. Res. 40, 205–210 (2001).

    CAS  PubMed  Google Scholar 

  30. Robison, A.J., Bartlett, R.K., Bass, M.A. & Colbran, R.J. Differential modulation of Ca2+/calmodulin-dependent protein kinase II activity by regulated interactions with N-methyl-D-aspartate receptor NR2B subunits and alpha-actinin. J. Biol. Chem. 280, 39316–39323 (2005).

    CAS  PubMed  Google Scholar 

  31. Robison, A.J. et al. Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2. J. Biol. Chem. 280, 35329–35336 (2005).

    CAS  PubMed  Google Scholar 

  32. Miller, S.G. & Kennedy, M.B. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell 44, 861–870 (1986).

    CAS  PubMed  Google Scholar 

  33. Nikandrova, Y.A., Jiao, Y., Baucum, A.J., Tavalin, S.J. & Colbran, R.J. Ca2+/calmodulin-dependent protein kinase II binds to and phosphorylates a specific SAP97 splice variant to disrupt association with AKAP79/150 and modulate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPAR) activity. J. Biol. Chem. 285, 923–934 (2010).

    CAS  PubMed  Google Scholar 

  34. Grueter, C.E. et al. L-type Ca2+ channel facilitation mediated by phosphorylation of the beta subunit by CaMKII. Mol. Cell 23, 641–650 (2006).

    CAS  PubMed  Google Scholar 

  35. Giese, K.P., Fedorov, N.B., Filipkowski, R.K. & Silva, A.J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

    CAS  PubMed  Google Scholar 

  36. Miller, S.G., Patton, B.L. & Kennedy, M.B. Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity. Neuron 1, 593–604 (1988).

    CAS  PubMed  Google Scholar 

  37. Dinh, T.P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA 99, 10819–10824 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ohno-Shosaku, T., Hashimotodani, Y., Maejima, T. & Kano, M. Calcium signaling and synaptic modulation: regulation of endocannabinoid-mediated synaptic modulation by calcium. Cell Calcium 38, 369–374 (2005).

    CAS  PubMed  Google Scholar 

  39. Kreitzer, A.C. & Malenka, R.C. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445, 643–647 (2007).

    CAS  PubMed  Google Scholar 

  40. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    CAS  PubMed  Google Scholar 

  42. Maejima, T., Hashimoto, K., Yoshida, T., Aiba, A. & Kano, M. Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31, 463–475 (2001).

    CAS  PubMed  Google Scholar 

  43. Aravanis, A.M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    PubMed  Google Scholar 

  44. Wiley, J.L. & Martin, B.R. Cannabinoid pharmacological properties common to other centrally acting drugs. Eur. J. Pharmacol. 471, 185–193 (2003).

    CAS  PubMed  Google Scholar 

  45. Long, J.Z. et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol. 5, 37–44 (2009).

    CAS  PubMed  Google Scholar 

  46. Zhang, L., Wang, M., Bisogno, T., Di Marzo, V. & Alger, B.E. Endocannabinoids generated by Ca2+ or by metabotropic glutamate receptors appear to arise from different pools of diacylglycerol lipase. PLoS ONE 6, e16305 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jenkins, M.A. et al. Ca2+-dependent facilitation of Cav1.3 Ca2+ channels by densin and Ca2+/calmodulin-dependent protein kinase II. J. Neurosci. 30, 5125–5135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gustin, R.M. et al. Loss of Thr286 phosphorylation disrupts synaptic CaMKIIalpha targeting, NMDAR activity and behavior in pre-adolescent mice. Mol. Cell Neurosci. 47, 286–292 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Picconi, B. et al. Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism. J. Neurosci. 24, 5283–5291 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Brown, A.M., Deutch, A.Y. & Colbran, R.J. Dopamine depletion alters phosphorylation of striatal proteins in a model of Parkinsonism. Eur. J. Neurosci. 22, 247–256 (2005).

    PubMed  PubMed Central  Google Scholar 

  51. Keimpema, E. et al. Differential subcellular recruitment of monoacylglycerol lipase generates spatial specificity of 2-arachidonoyl glycerol signaling during axonal pathfinding. J. Neurosci. 30, 13992–14007 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Katona, I. et al. Molecular composition of the endocannabinoid system at glutamatergic synapses. J. Neurosci. 26, 5628–5637 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Eng, J.K., McCormack, A.L., Yates, I. & John, R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    CAS  PubMed  Google Scholar 

  54. Ma, Z.Q. et al. IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering. J. Proteome Res. 8, 3872–3881 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Patel, S., Kingsley, P.J., Mackie, K., Marnett, L.J. & Winder, D.G. Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala. Neuropsychopharmacology 34, 2699–2709 (2009).

    CAS  PubMed  Google Scholar 

  57. Sumislawski, J.J., Ramikie, T.S. & Patel, S. Reversible gating of endocannabinoid plasticity in the amygdala by chronic stress: a potential role for monoacylglycerol lipase inhibition in the prevention of stress-induced behavioral adaptation. Neuropsychopharmacology 36, 2750–2761 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (T32-NS007491 and T32-MH065215 to B.C.S.; K01-NS073700 to A.J.B.; K05-DA021696 and R01-DA011322 to K.M.; R01-AA019455 to D.G.W.; K08-MH090412 to S.P.; and R01-MH063232 and R01-NS078291 to R.J.C.), the Michael J. Fox Foundation (R.J.C.) and the Luton Society (S.P.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health. Behavioral studies were performed in the Murine Neurobehavior Core and mass spectrometry and proteomics studies were performed at the Mass Spectrometry Research Center, both at Vanderbilt University Medical Center. We thank B. Cravatt (The Scripps Research Institute) for plasmids encoding DGLα-V5 and DGLβ-V5.

Author information

Authors and Affiliations

Authors

Contributions

B.C.S. and A.J.B. performed all of the immunoprecipitation studies and LC/MS quantification of striatal lipid levels. B.C.S. performed all of the DGL activity assays. V.S.C. carried out the GST cosedimentation assay. B.C.S. and X.W. generated the GST-fusion proteins and DGLα mutants, and performed the phosphorylation site identification studies. B.C.S. and K.L.R. performed the LC/MS analysis of phosphorylation sites. B.C.S., T.S.R. and S.P. conducted the electrophysiology experiments. B.C.S. and T.R. carried out the behavioral experiments. B.C.S. analyzed data from all experiments. N.J.-S. performed the T286 phosphorylation measurements in HEK293 cells. K.M. contributed the DGL antibodies. B.C.S., D.G.W., S.P. and R.J.C. designed the experiments. B.C.S., S.P. and R.J.C. prepared the manuscript with input from all other authors.

Corresponding authors

Correspondence to Sachin Patel or Roger J Colbran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1 and 2, Supplementary Figures 1–7 (PDF 6225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shonesy, B., Wang, X., Rose, K. et al. CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling. Nat Neurosci 16, 456–463 (2013). https://doi.org/10.1038/nn.3353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3353

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing