Confidence in value-based choice


Decisions are never perfect, with confidence in one's choices fluctuating over time. How subjective confidence and valuation of choice options interact at the level of brain and behavior is unknown. Using a dynamic model of the decision process, we show that confidence reflects the evolution of a decision variable over time, explaining the observed relation between confidence, value, accuracy and reaction time. As predicted by our dynamic model, we show that a functional magnetic resonance imaging signal in human ventromedial prefrontal cortex (vmPFC) reflects both value comparison and confidence in the value comparison process. Crucially, individuals varied in how they related confidence to accuracy, allowing us to show that this introspective ability is predicted by a measure of functional connectivity between vmPFC and rostrolateral prefrontal cortex. Our findings provide a mechanistic link between noise in value comparison and metacognitive awareness of choice, enabling us both to want and to express knowledge of what we want.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Task and behavioral results.
Figure 2: Computational model.
Figure 3: vmPFC.
Figure 4: RLPFC.
Figure 5: Connectivity analysis.
Figure 6: Schematic of network relating confidence to subjective report.


  1. 1

    Rangel, A. & Hare, T. Neural computations associated with goal-directed choice. Curr. Opin. Neurobiol. 20, 262–270 (2010).

    CAS  Article  Google Scholar 

  2. 2

    FitzGerald, T.H.B., Seymour, B. & Dolan, R.J. The role of human orbitofrontal cortex in value comparison for incommensurable objects. J. Neurosci. 29, 8388–8395 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Kable, J.W. & Glimcher, P.W. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10, 1625–1633 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Basten, U., Biele, G., Heekeren, H.R. & Fiebach, C.J. How the brain integrates costs and benefits during decision making. Proc. Natl. Acad. Sci. USA 107, 21767–21772 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Smith, D.V. et al. Distinct value signals in anterior and posterior ventromedial prefrontal cortex. J. Neurosci. 30, 2490–2495 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Hunt, L.T. et al. Mechanisms underlying cortical activity during value-guided choice. Nat. Neurosci. 15, 470–476 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Kepecs, A., Uchida, N., Zariwala, H.A. & Mainen, Z.F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Rolls, E.T., Grabenhorst, F. & Deco, G. Choice, difficulty, and confidence in the brain. Neuroimage 53, 694–706 (2010).

    Article  Google Scholar 

  9. 9

    Fleming, S.M., Weil, R.S., Nagy, Z., Dolan, R.J. & Rees, G. Relating introspective accuracy to individual differences in brain structure. Science 329, 1541–1543 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Pleskac, T.J. & Busemeyer, J.R. Two-stage dynamic signal detection: A theory of choice, decision time, and confidence. Psychol. Rev. 117, 864–901 (2010).

    Article  Google Scholar 

  11. 11

    Kepecs, A. & Mainen, Z. A computational framework for the study of confidence in humans and animals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1322–1337 (2012).

    Article  Google Scholar 

  12. 12

    Vickers, D. Decision Processes in Visual Perception (Academic Press, 1979).

  13. 13

    Bogacz, R., Brown, E., Moehlis, J., Holmes, P. & Cohen, J.D. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765 (2006).

    Article  Google Scholar 

  14. 14

    Fleming, S.M., Huijgen, J. & Dolan, R.J. Prefrontal contributions to metacognition in perceptual decision making. J. Neurosci. 32, 6117–6125 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Becker, G.M., DeGroot, M.H. & Marschak, J. Measuring utility by a single-response sequential method. Behav. Sci. 9, 226–232 (1964).

    CAS  Article  Google Scholar 

  16. 16

    Plassmann, H., O'Doherty, J. & Rangel, A. Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. J. Neurosci. 27, 9984–9988 (2007).

    CAS  Article  Google Scholar 

  17. 17

    De Martino, B., Kumaran, D., Holt, B. & Dolan, R.J. The neurobiology of reference-dependent value computation. J. Neurosci. 29, 3833–3842 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Hare, T.A., O'Doherty, J., Camerer, C.F., Schultz, W. & Rangel, A. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J. Neurosci. 28, 5623–5630 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Boorman, E.D., Behrens, T.E.J., Woolrich, M.W. & Rushworth, M.F.S. How green is the grass on the other side? Frontopolar cortex and the evidence in favor of alternative courses of action. Neuron 62, 733–743 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Choosing the greater of two goods: neural currencies for valuation and decision making. Nat. Rev. Neurosci. 6, 363–375 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Vickers, D. Evidence for an accumulator model of psychophysical discrimination. Ergonomics 13, 37–58 (1970).

    CAS  Article  Google Scholar 

  22. 22

    Insabato, A., Pannunzi, M., Rolls, E.T. & Deco, G. Confidence-related decision making. J. Neurophysiol. 104, 539–547 (2010).

    Article  Google Scholar 

  23. 23

    Lau, H. & Rosenthal, D. Empirical support for higher-order theories of conscious awareness. Trends Cogn. Sci. 15, 365–373 (2011).

    Article  Google Scholar 

  24. 24

    Pasquali, A., Timmermans, B. & Cleeremans, A. Know thyself: metacognitive networks and measures of consciousness. Cognition 117, 182–190 (2010).

    Article  Google Scholar 

  25. 25

    Yokoyama, O. et al. Right frontopolar cortex activity correlates with reliability of retrospective rating of confidence in short-term recognition memory performance. Neurosci. Res. 68, 199–206 (2010).

    Article  Google Scholar 

  26. 26

    Maniscalco, B. & Lau, H. Comparing signal detection models of perceptual decision confidence. J. Vis. 10, 213 (2010).

    Article  Google Scholar 

  27. 27

    Kiani, R. & Shadlen, M.N. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324, 759–764 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Summerfield, C. & Tsetsos, K. Building bridges between perceptual and economic decision-making: neural and computational mechanisms. Front. Neurosci. 6, 70 (2012).

    Article  Google Scholar 

  29. 29

    Feldman, H. & Friston, K.J. Attention, uncertainty, and free-energy. Front. Hum. Neurosci. 4, 215 (2010).

    Article  Google Scholar 

  30. 30

    Knill, D.C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Hare, T.A., Camerer, C.F. & Rangel, A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324, 646–648 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Glimcher, P.W. Indeterminacy in brain and behavior. Annu. Rev. Psychol. 56, 25–56 (2005).

    Article  Google Scholar 

  34. 34

    Bahrami, B. et al. Optimally interacting minds. Science 329, 1081–1085 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Kass, R. Bayes factor. J. Am. Stat. Assoc. 430, 773–795 (1995).

    Article  Google Scholar 

  36. 36

    Song, C. et al. Relating inter-individual differences in metacognitive performance on different perceptual tasks. Conscious. Cogn. 20, 1787–1792 (2011).

    Article  Google Scholar 

  37. 37

    Gläscher, J. Visualization of group inference data in functional neuroimaging. Neuroinformatics 7, 73–82 (2009).

    Article  Google Scholar 

Download references


We thank T. Fitzgerald, D. Kumaran and T. Sharot for comments on a previous draft of this manuscript, and T. Behrens and N. Daw for discussions. This work was supported by a Wellcome Trust Senior Investigator Award, 098362/Z/12/Z to R.J.D.; S.M.F. and B.D.M. are supported by Sir Henry Wellcome Fellowships (B.D.M., 082674/Z/07/Z; S.M.F., WT096185). The Wellcome Trust Centre for Neuroimaging is supported by core funding from the Wellcome Trust, 091593/Z/10/Z.

Author information




B.D.M. and S.M.F. conceived and designed the study. B.D.M., N.G. and S.M.F. developed stimuli and gathered and analyzed behavioral and fMRI data. B.D.M., S.M.F. and R.J.D. interpreted the data and wrote the paper.

Corresponding authors

Correspondence to Benedetto De Martino or Stephen M Fleming.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–4 (PDF 598 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Martino, B., Fleming, S., Garrett, N. et al. Confidence in value-based choice. Nat Neurosci 16, 105–110 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing