Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets


During neurogenesis, neural stem/progenitor cells (NPCs) undergo an irreversible fate transition to become neurons. The Notch pathway is important for this process, and repression of Notch-dependent Hes genes is essential for triggering differentiation. However, Notch signaling often remains active throughout neuronal differentiation, implying a change in the transcriptional responsiveness to Notch during the neurogenic transition. We identified Bcl6, an oncogene, as encoding a proneurogenic factor that is required for proper neurogenesis of the mouse cerebral cortex. BCL6 promoted the neurogenic conversion by switching the composition of Notch-dependent transcriptional complexes at the Hes5 promoter. BCL6 triggered exclusion of the co-activator Mastermind-like 1 and recruitment of the NAD+-dependent deacetylase Sirt1, which was required for BCL6-dependent neurogenesis. The resulting epigenetic silencing of Hes5 led to neuronal differentiation despite active Notch signaling. Our findings suggest a role for BCL6 in neurogenesis and uncover Notch-BCL6-Sirt1 interactions that may affect other aspects of physiology and disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: BCL6 triggers neuronal differentiation during ESC-derived cortical neurogenesis.
Figure 2: BCL6 induces precocious neuronal differentiation during in vivo corticogenesis.
Figure 3: BCL6 is required for proper corticogenesis in vivo.
Figure 4: BCL6 is required for cortical neurogenesis in vivo.
Figure 5: BCL6 induces neurogenesis through repression of Hes5.
Figure 6: BCL6 directly represses the transcription of the Notch target Hes5.
Figure 7: BCL6 inhibits Maml1 recruitment at the Hes5 promoter.
Figure 8: BCL6 neurogenic effect requires Sirt1 recruitment at the Hes5 promoter to modulate histone acetylation.


  1. 1

    Hsieh, J. & Gage, F.H. Chromatin remodeling in neural development and plasticity. Curr. Opin. Cell Biol. 17, 664–671 (2005).

    CAS  PubMed  Google Scholar 

  2. 2

    Yoo, A.S. & Crabtree, G.R. ATP-dependent chromatin remodeling in neural development. Curr. Opin. Neurobiol. 19, 120–126 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Hirabayashi, Y. & Gotoh, Y. Epigenetic control of neural precursor cell fate during development. Nat. Rev. Neurosci. 11, 377–388 (2010).

    CAS  PubMed  Google Scholar 

  4. 4

    Bertrand, N., Castro, D.S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).

    CAS  PubMed  Google Scholar 

  5. 5

    Kageyama, R., Ohtsuka, T., Shimojo, H. & Imayoshi, I. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat. Neurosci. 11, 1247–1251 (2008).

    CAS  PubMed  Google Scholar 

  6. 6

    Louvi, A. & Artavanis-Tsakonas, S. Notch signaling in vertebrate neural development. Nat. Rev. Neurosci. 7, 93–102 (2006).

    CAS  PubMed  Google Scholar 

  7. 7

    Pierfelice, T., Alberi, L. & Gaiano, N. Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69, 840–855 (2011).

    CAS  PubMed  Google Scholar 

  8. 8

    Kopan, R. & Ilagan, M.X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Ohtsuka, T., Sakamoto, M., Guillemot, F. & Kageyama, R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467–30474 (2001).

    CAS  PubMed  Google Scholar 

  10. 10

    Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58, 52–64 (2008).

    CAS  PubMed  Google Scholar 

  11. 11

    Kawaguchi, D., Yoshimatsu, T., Hozumi, K. & Gotoh, Y. Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon. Development 135, 3849–3858 (2008).

    CAS  PubMed  Google Scholar 

  12. 12

    Borggrefe, T. & Liefke, R. Fine-tuning of the intracellular canonical Notch signaling pathway. Cell Cycle 11, 264–276 (2012).

    CAS  PubMed  Google Scholar 

  13. 13

    Mizutani, K., Yoon, K., Dang, L., Tokunaga, A. & Gaiano, N. Differential Notch signaling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351–355 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Redmond, L., Oh, S.R., Hicks, C., Weinmaster, G. & Ghosh, A. Nuclear Notch1 signaling and the regulation of dendritic development. Nat. Neurosci. 3, 30–40 (2000).

    CAS  PubMed  Google Scholar 

  15. 15

    Sestan, N., Artavanis-Tsakonas, S. & Rakic, P. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 286, 741–746 (1999).

    CAS  PubMed  Google Scholar 

  16. 16

    Hashimoto-Torii, K. et al. Interaction between Reelin and Notch signaling regulates neuronal migration in the cerebral cortex. Neuron 60, 273–284 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    CAS  PubMed  Google Scholar 

  19. 19

    Miyata, T. et al. Asymmetric production of surface-dividing and non–surface-dividing cortical progenitor cells. Development 131, 3133–3145 (2004).

    CAS  PubMed  Google Scholar 

  20. 20

    Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    CAS  PubMed  Google Scholar 

  21. 21

    Tiberi, L., Vanderhaeghen, P. & van den Ameele, J. Cortical neurogenesis and morphogens: diversity of cues, sources and functions. Curr. Opin. Cell Biol. 24, 269–276 (2012).

    CAS  PubMed  Google Scholar 

  22. 22

    Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    PubMed  Google Scholar 

  23. 23

    Okano, H. & Temple, S. Cell types to order: temporal specification of CNS stem cells. Curr. Opin. Neurobiol. 19, 112–119 (2009).

    CAS  PubMed  Google Scholar 

  24. 24

    Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    CAS  Google Scholar 

  25. 25

    Gaspard, N. & Vanderhaeghen, P. Mechanisms of neural specification from embryonic stem cells. Curr. Opin. Neurobiol. 20, 37–43 (2010).

    CAS  PubMed  Google Scholar 

  26. 26

    Chang, C.C., Ye, B.H., Chaganti, R.S. & Dalla-Favera, R. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc. Natl. Acad. Sci. USA 93, 6947–6952 (1996).

    CAS  PubMed  Google Scholar 

  27. 27

    Ye, B.H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747–750 (1993).

    CAS  PubMed  Google Scholar 

  28. 28

    Iacovino, M. et al. Inducible cassette exchange: a rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells. Stem Cells 29, 1580–1588 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    van den Ameele, J. et al. Eomesodermin induces Mesp1 expression and cardiac differentiation from embryonic stem cells in the absence of Activin. EMBO Rep. 13, 355–362 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Ye, B.H. et al. The Bcl6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat. Genet. 16, 161–170 (1997).

    CAS  PubMed  Google Scholar 

  31. 31

    Phan, R.T. & Dalla-Favera, R. The Bcl6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432, 635–639 (2004).

    CAS  PubMed  Google Scholar 

  32. 32

    Otaki, J.M., Hatano, M., Matayoshi, R., Tokuhisa, T. & Yamamoto, H. The proto-oncogene Bcl6 promotes survival of olfactory sensory neurons. Dev. Neurobiol. 70, 424–435 (2010).

    CAS  PubMed  Google Scholar 

  33. 33

    Zhang, S.J. et al. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 53, 549–562 (2007).

    CAS  PubMed  Google Scholar 

  34. 34

    Bedogni, F. et al. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc. Natl. Acad. Sci. USA 107, 13129–13134 (2010).

    CAS  PubMed  Google Scholar 

  35. 35

    Funatsu, N., Inoue, T. & Nakamura, S. Gene expression analysis of the late embryonic mouse cerebral cortex using DNA microarray: identification of several region- and layer-specific genes. Cereb. Cortex 14, 1031–1044 (2004).

    PubMed  Google Scholar 

  36. 36

    Leamey, C.A. et al. Differential gene expression between sensory neocortical areas: potential roles for Ten_m3 and Bcl6 in patterning visual and somatosensory pathways. Cereb. Cortex 18, 53–66 (2008).

    PubMed  Google Scholar 

  37. 37

    Ong, C.T. et al. Target selectivity of vertebrate notch proteins. Collaboration between discrete domains and CSL-binding site architecture determines activation probability. J. Biol. Chem. 281, 5106–5119 (2006).

    CAS  PubMed  Google Scholar 

  38. 38

    Sakano, D. et al. BCL6 canalizes Notch-dependent transcription, excluding Mastermind-like1 from selected target genes during left-right patterning. Dev. Cell 18, 450–462 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Herranz, D. & Serrano, M. SIRT1: recent lessons from mouse models. Nat. Rev. Cancer 10, 819–823 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Hisahara, S. et al. Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl. Acad. Sci. USA 105, 15599–15604 (2008).

    CAS  PubMed  Google Scholar 

  41. 41

    Mulligan, P. et al. A SIRT1-LSD1 co-repressor complex regulates Notch target gene expression and development. Mol. Cell 42, 689–699 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Guarani, V. et al. Acetylation-dependent regulation of endothelial Notch signaling by the SIRT1 deacetylase. Nature 473, 234–238 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Min, S.W. et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67, 953–966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Bray, S. & Bernard, F. Notch targets and their regulation. Curr. Top. Dev. Biol. 92, 253–275 (2010).

    CAS  PubMed  Google Scholar 

  45. 45

    Hoeck, J.D. et al. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat. Neurosci. 13, 1365–1372 (2010).

    CAS  PubMed  Google Scholar 

  46. 46

    Sabharwal, P., Lee, C., Park, S., Rao, M. & Sockanathan, S. GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling. Neuron 71, 1058–1070 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Endo, K. et al. Chromatin modification of Notch targets in olfactory receptor neuron diversification. Nat. Neurosci. 15, 224–233 (2012).

    CAS  Google Scholar 

  48. 48

    Prozorovski, T. et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell Biol. 10, 385–394 (2008).

    CAS  PubMed  Google Scholar 

  49. 49

    Gao, J. et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466, 1105–1109 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Donmez, G., Wang, D., Cohen, D.E. & Guarente, L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142, 320–332 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Gaspard, N. et al. Generation of cortical neurons from mouse embryonic stem cells. Nat. Protoc. 4, 1454–1463 (2009).

    CAS  PubMed  Google Scholar 

  52. 52

    Heng, J.I. et al. Neurogenin 2 controls cortical neuron migration through regulation of Rnd2. Nature 455, 114–118 (2008).

    CAS  PubMed  Google Scholar 

  53. 53

    Rustighi, A. et al. The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nat. Cell Biol. 11, 133–142 (2009).

    CAS  PubMed  Google Scholar 

  54. 54

    Takeda, N. et al. Bcl6 is a transcriptional repressor for the IL-18 gene. J. Immunol. 171, 426–431 (2003).

    CAS  PubMed  Google Scholar 

  55. 55

    Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Dufour, A. et al. Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron 39, 453–465 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Depaepe, V. et al. Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 435, 1244–1250 (2005).

    CAS  PubMed  Google Scholar 

Download references


We thank G. Vassart for continuous support and interest, D. Christophe and members of the Vanderhaeghen lab and Institute for Interdisciplinary Research for helpful discussions and advice, F. Bollet-Quivogne (Fonds National de la Recherche Scientifique (FNRS) Logistic Scientist) of the Light Microscopy Facility for his support with imaging, R. Dalla-Favera (Columbia University) for generously sharing Bcl6−/− mice, F. Guillemot (National Institute of Medical Research) for kindly providing P19 cells, and G. Del Sal ((Laboratorio Nazionale CIB) Trieste) for the pCS2-NΔE construct, and B. Hassan, A. Soldano and K. De Backer for critically reading the manuscript. This work was funded by grants from the Belgian Queen Elizabeth Medical Foundation, the Fondations Pierre Clerdent and Roger de Spoelberch, the Action de Recherches Concertées Programs, the Interuniversity Attraction Poles Program, Belgian State, Federal Office for Scientific, Technical and Cultural Affairs, the Belgian FNRS and Fonds pour la Recherche Scientifique Médicale, and the Welbio and Programme d'Excellence CIBLES of the Walloon Region (to P.V.), as well as an EMBO Long-Term Fellowship (to L.T.) and a Marie Curie Fellowship (to T.B.). P.V. is Research Director, L.T. Postdoctoral Fellow, and J.v.d.A. and J.P. Research Fellows of the FNRS.

Author information




L.T., J.v.d.A., J.D., J.P., D.G., A.H., A.B. and J.B. performed all experiments. T.B., M.I. and M.K. provided crucial cell reagents. L.T., J.v.d.A. and P.V. designed and analyzed all experiments and wrote the manuscript.

Corresponding author

Correspondence to Pierre Vanderhaeghen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 3936 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tiberi, L., van den Ameele, J., Dimidschstein, J. et al. BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat Neurosci 15, 1627–1635 (2012).

Download citation

Further reading


Quick links