Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unraveling the brain regulation of appetite: lessons from genetics

Abstract

Over the past 20 years, genetic studies have illuminated critical pathways in the hypothalamus and brainstem mediating energy homeostasis, such as the melanocortin, leptin, 5-hydroxytryptamine and brain-derived neurotrophic factor signaling axes. The identification of these pathways necessary for appropriate appetitive responses to energy state has yielded insight into normal homeostatic processes. Although monogenic alterations in each of these axes result in severe obesity, such cases remain rare. The major burden of disease is carried by those with common obesity, which has so far resisted yielding meaningful biological insights. Recent progress into the etiology of common obesity has been made with genome-wide association studies. Such studies now reveal more than 32 different candidate obesity genes, most of which are highly expressed or known to act in the CNS, emphasizing, as in rare monogenic forms of obesity, the role of the brain in predisposition to obesity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: POMC and its receptors.
Figure 2: Brain sensing of gut- and adipocyte-derived hormones.
Figure 3: Schematic representation of the hypothalamic nuclei and other relevant higher brain regions.

References

  1. Stunkard, A.J., Foch, T.T. & Hrubec, Z. A twin study of human obesity. J. Am. Med. Assoc. 256, 51–54 (1986).

    CAS  Google Scholar 

  2. Stunkard, A.J., Harris, J.R., Pedersen, N.L. & McClearn, G.E. The body-mass index of twins who have been reared apart. N. Engl. J. Med. 322, 1483–1487 (1990).

    CAS  PubMed  Google Scholar 

  3. Cone, R.D. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Bertagna, X. Proopiomelanocortin-derived peptides. Endocrinol. Metab. Clin. North Am. 23, 467–485 (1994).

    CAS  PubMed  Google Scholar 

  5. Castro, M.G. & Morrison, E. Post-translational processing of proopiomelanocortin in the pituitary and in the brain. Crit. Rev. Neurobiol. 11, 35–57 (1997).

    CAS  PubMed  Google Scholar 

  6. Ollmann, M.M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    CAS  PubMed  Google Scholar 

  7. Fan, W., Boston, B.A., Kesterson, R.A., Hruby, V.J. & Cone, R.D. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168 (1997).

    CAS  PubMed  Google Scholar 

  8. Cowley, M.A. et al. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron 24, 155–163 (1999).

    CAS  PubMed  Google Scholar 

  9. Aponte, Y., Atasoy, D. & Sternson, S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    CAS  PubMed  Google Scholar 

  10. Krashes, M.J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Atasoy, D., Betley, J.N., Su, H.H. & Sternson, S.M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Erickson, J.C., Clegg, K.E. & Palmiter, R.D. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381, 415–418 (1996).

    CAS  PubMed  Google Scholar 

  13. Erickson, J.C., Hollopeter, G. & Palmiter, R.D. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274, 1704–1707 (1996).

    CAS  PubMed  Google Scholar 

  14. Qian, S. et al. Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Mol. Cell. Biol. 22, 5027–5035 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tong, Q., Ye, C.P., Jones, J.E., Elmquist, J.K. & Lowell, B.B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci. 11, 998–1000 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wortley, K.E. et al. Agouti-related protein-deficient mice display an age-related lean phenotype. Cell Metab. 2, 421–427 (2005).

    CAS  PubMed  Google Scholar 

  17. Bewick, G.A. et al. Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J. 19, 1680–1682 (2005).

    CAS  PubMed  Google Scholar 

  18. Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat. Neurosci. 8, 1289–1291 (2005).

    CAS  PubMed  Google Scholar 

  19. Luquet, S., Perez, F.A., Hnasko, T.S. & Palmiter, R.D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685 (2005).

    CAS  PubMed  Google Scholar 

  20. Xu, A.W. et al. Effects of hypothalamic neurodegeneration on energy balance. PLoS Biol. 3, e415 (2005).

    PubMed  PubMed Central  Google Scholar 

  21. Wu, Q., Boyle, M.P. & Palmiter, R.D. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137, 1225–1234 (2009).

    PubMed  PubMed Central  Google Scholar 

  22. Wu, Q., Clark, M.S. & Palmiter, R.D. Deciphering a neuronal circuit that mediates appetite. Nature 483, 594–597 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Challis, B.G. et al. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY3–36 . Proc. Natl. Acad. Sci. USA 101, 4695–4700 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).

    CAS  PubMed  Google Scholar 

  25. Yaswen, L., Diehl, N., Brennan, M.B. & Hochgeschwender, U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat. Med. 5, 1066–1070 (1999).

    CAS  PubMed  Google Scholar 

  26. Krude, H. et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998).

    CAS  PubMed  Google Scholar 

  27. Vaisse, C., Clement, K., Guy-Grand, B. & Froguel, P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet. 20, 113–114 (1998).

    CAS  PubMed  Google Scholar 

  28. Yeo, G.S. et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 20, 111–112 (1998).

    CAS  PubMed  Google Scholar 

  29. Farooqi, I.S. et al. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348, 1085–1095 (2003).

    CAS  PubMed  Google Scholar 

  30. Kishi, T. et al. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J. Comp. Neurol. 457, 213–235 (2003).

    CAS  PubMed  Google Scholar 

  31. Balthasar, N. et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123, 493–505 (2005).

    CAS  PubMed  Google Scholar 

  32. Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Friedman, J.M. & Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    CAS  PubMed  Google Scholar 

  34. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    CAS  PubMed  Google Scholar 

  35. Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84, 491–495 (1996).

    CAS  PubMed  Google Scholar 

  36. Montague, C.T. et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997).

    CAS  PubMed  Google Scholar 

  37. Farooqi, I.S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    CAS  PubMed  Google Scholar 

  38. Pelleymounter, M.A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995).

    CAS  PubMed  Google Scholar 

  39. Heymsfield, S.B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. J. Am. Med. Assoc. 282, 1568–1575 (1999).

    CAS  Google Scholar 

  40. Ahima, R.S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996).

    CAS  PubMed  Google Scholar 

  41. de Luca, C. et al. Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes. J. Clin. Invest. 115, 3484–3493 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cowley, M.A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    CAS  PubMed  Google Scholar 

  43. Balthasar, N. et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 42, 983–991 (2004).

    CAS  PubMed  Google Scholar 

  44. van de Wall, E. et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149, 1773–1785 (2008).

    CAS  PubMed  Google Scholar 

  45. Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191–203 (2006).

    CAS  PubMed  Google Scholar 

  46. Leinninger, G.M. et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab. 14, 313–323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hayes, M.R. et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab. 11, 77–83 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hommel, J.D. et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51, 801–810 (2006).

    CAS  PubMed  Google Scholar 

  49. Yadav, V.K. et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138, 976–989 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lam, D.D. et al. Leptin does not directly affect CNS serotonin neurons to influence appetite. Cell Metab. 13, 584–591 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lam, D.D. & Heisler, L.K. Serotonin and energy balance: molecular mechanisms and implications for type 2 diabetes. Expert Rev. Mol. Med. 9, 1–24 (2007).

    PubMed  Google Scholar 

  52. Garfield, A.S. & Heisler, L.K. Pharmacological targeting of the serotonergic system for the treatment of obesity. J. Physiol. (Lond.) 587, 49–60 (2009).

    CAS  Google Scholar 

  53. Heisler, L.K. et al. Activation of central melanocortin pathways by fenfluramine. Science 297, 609–611 (2002).

    CAS  PubMed  Google Scholar 

  54. Heisler, L.K. et al. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 51, 239–249 (2006).

    CAS  PubMed  Google Scholar 

  55. Fidler, M.C. et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J. Clin. Endocrinol. Metab. 96, 3067–3077 (2011).

    CAS  PubMed  Google Scholar 

  56. Sohn, J.W. et al. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels. Neuron 71, 488–497 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu, Y. et al. 5–HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 60, 582–589 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu, Y. et al. A serotonin and melanocortin circuit mediates d-fenfluramine anorexia. J. Neurosci. 30, 14630–14634 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Barde, Y.A. The nerve growth factor family. Prog. Growth Factor Res. 2, 237–248 (1990).

    CAS  PubMed  Google Scholar 

  60. Snider, W.D. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77, 627–638 (1994).

    PubMed  Google Scholar 

  61. Kernie, S.G., Liebl, D.J. & Parada, L.F. BDNF regulates eating behavior and locomotor activity in mice. EMBO J. 19, 1290–1300 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Rios, M. et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol. Endocrinol. 15, 1748–1757 (2001).

    CAS  PubMed  Google Scholar 

  63. Xu, B. et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat. Neurosci. 6, 736–742 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gray, J. et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 55, 3366–3371 (2006).

    CAS  PubMed  Google Scholar 

  65. Yeo, G.S. et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat. Neurosci. 7, 1187–1189 (2004).

    CAS  PubMed  Google Scholar 

  66. Pelleymounter, M.A., Cullen, M.J. & Wellman, C.L. Characteristics of BDNF-induced weight loss. Exp. Neurol. 131, 229–238 (1995).

    CAS  PubMed  Google Scholar 

  67. Bariohay, B. et al. Brain-derived neurotrophic factor/tropomyosin-related kinase receptor type B signaling is a downstream effector of the brainstem melanocortin system in food intake control. Endocrinology 150, 2646–2653 (2009).

    CAS  PubMed  Google Scholar 

  68. Spaeth, A.M., Kanoski, S.E., Hayes, M.R. & Grill, H.J. TrkB receptor signaling in the nucleus tractus solitarius mediates the food intake suppressive effects of hindbrain BDNF and leptin. Am. J. Physiol. Endocrinol. Metab. 302, E1252–E1260 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nicholson, J.R., Peter, J.C., Lecourt, A.C., Barde, Y.A. & Hofbauer, K.G. Melanocortin-4 receptor activation stimulates hypothalamic brain-derived neurotrophic factor release to regulate food intake, body temperature and cardiovascular function. J. Neuroendocrinol. 19, 974–982 (2007).

    CAS  PubMed  Google Scholar 

  70. Komori, T., Morikawa, Y., Nanjo, K. & Senba, E. Induction of brain-derived neurotrophic factor by leptin in the ventromedial hypothalamus. Neuroscience 139, 1107–1115 (2006).

    CAS  PubMed  Google Scholar 

  71. Godar, R. et al. Reduction of high-fat diet-induced obesity after chronic administration of brain-derived neurotrophic factor in the hypothalamic ventromedial nucleus. Neuroscience 194, 36–52 (2011).

    CAS  PubMed  Google Scholar 

  72. Unger, T.J., Calderon, G.A., Bradley, L.C., Sena-Esteves, M. & Rios, M. Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J. Neurosci. 27, 14265–14274 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tran, P.V. et al. Diminished hypothalamic bdnf expression and impaired VMH function are associated with reduced SF-1 gene dosage. J. Comp. Neurol. 498, 637–648 (2006).

    CAS  PubMed  Google Scholar 

  74. Frayling, T.M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tung, Y.C. & Yeo, G.S. From GWAS to biology: lessons from FTO. Ann. NY Acad. Sci. 1220, 162–171 (2011).

    PubMed  Google Scholar 

  76. Boissel, S. et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am. J. Hum. Genet. 85, 106–111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fischer, J. et al. Inactivation of the Fto gene protects from obesity. Nature 458, 894–898 (2009).

    CAS  PubMed  Google Scholar 

  78. Gerken, T. et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318, 1469–1472 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tung, Y.C. et al. Hypothalamic-specific manipulation of Fto, the ortholog of the human obesity gene FTO, affects food intake in rats. PLoS ONE 5, e8771 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Willer, C.J. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41, 25–34 (2009).

    CAS  PubMed  Google Scholar 

  82. Loos, R.J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40, 768–775 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ren, D. et al. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. J. Clin. Invest. 117, 397–406 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Funatsu, N. et al. Characterization of a novel rat brain glycosylphosphatidylinositol-anchored protein (Kilon), a member of the IgLON cell adhesion molecule family. J. Biol. Chem. 274, 8224–8230 (1999).

    CAS  PubMed  Google Scholar 

  85. Jurvansuu, J.M. & Goldman, A. Obesity risk gene TMEM18 encodes a sequence-specific DNA-binding protein. PLoS ONE 6, e25317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Morris, H.V. et al. Alpha2-containing GABAA receptors are involved in mediating stimulant effects of cocaine. Pharmacol. Biochem. Behav. 90, 9–18 (2008).

    CAS  PubMed  Google Scholar 

  87. Suviolahti, E. et al. The SLC6A14 gene shows evidence of association with obesity. J. Clin. Invest. 112, 1762–1772 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Vimaleswaran, K.S. et al. Association between serotonin 5-HT-2C receptor gene (HTR2C) polymorphisms and obesity- and mental health-related phenotypes in a large population-based cohort. Int. J. Obes. (Lond.) 34, 1028–1033 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

G.S.H.Y. is supported by the UK Medical Research Council Centre for Obesity and Related Metabolic Disorders (MRC-CORD) and the European Union (FP7-HEALTH-2009-241592 EurOCHIP and FP7-HEALTH-266408 Full4Health). L.K.H. is supported by the Wellcome Trust (WT081713; WT090812).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giles S H Yeo or Lora K Heisler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, G., Heisler, L. Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci 15, 1343–1349 (2012). https://doi.org/10.1038/nn.3211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing