Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DOCK7 interacts with TACC3 to regulate interkinetic nuclear migration and cortical neurogenesis

Abstract

Neurogenesis in the developing neocortex relies on the ability of radial glial progenitor cells (RGCs) to switch from proliferative to differentiative neuron-generating divisions, but the molecular mechanisms that control this switch in a correct temporal manner are not well understood. Here, we show that DOCK7, a member of the DOCK180 family of proteins, regulates RGC proliferation versus differentiation. Silencing of DOCK7 in RGCs of developing mouse embryos impedes neuronal differentiation and maintains cells as cycling progenitors. In contrast, DOCK7 overexpression promotes RGC differentiation to basal progenitors and neurons. We further present evidence that DOCK7 influences neurogenesis by controlling apically directed interkinetic nuclear migration of RGCs. DOCK7 exerts its effects by antagonizing the microtubule growth-promoting function of the centrosome-associated protein TACC3. Thus, DOCK7 interaction with TACC3 controls interkinetic nuclear migration and the genesis of neurons from RGCs during cortical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution and localization of DOCK7 in the developing mouse cortex.
Figure 2: DOCK7 modulates the VZ progenitor pool size.
Figure 3: DOCK7 is required for the transition of RGCs to basal progenitors and genesis of neurons.
Figure 4: DOCK7 controls bl-to-ap INM of RGCs.
Figure 5: Altered DOCK7 expression affects apically directed INM of RGCs in acute cortical slices.
Figure 6: DOCK7 interacts with TACC3.
Figure 7: DOCK7 antagonizes TACC3 function during cortical neurogenesis.
Figure 8: DOCK7 antagonizes microtubule growth–promoting or microtubule-stabilizing function of TACC3.

Similar content being viewed by others

References

  1. McConnell, S.K. Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 15, 761–768 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  PubMed  Google Scholar 

  3. Farkas, L.M. & Huttner, W.B. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr. Opin. Cell Biol. 20, 707–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Miyata, T., Kawaguchi, D., Kawaguchi, A. & Gotoh, Y. Mechanisms that regulate the number of neurons during mouse neocortical development. Curr. Opin. Neurobiol. 20, 22–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Johansson, P.A., Cappello, S. & Götz, M. Stem cells niches during development–lessons from the cerebral cortex. Curr. Opin. Neurobiol. 20, 400–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Tamamaki, N., Nakamura, K., Okamoto, K. & Kaneko, T. Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci. Res. 41, 51–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S. & Kriegstein, A.R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Anthony, T.E., Klein, C., Fishell, G. & Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Malatesta, P., Hartfuss, E. & Götz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    CAS  PubMed  Google Scholar 

  12. Latasa, M.J., Cisneros, E. & Frade, J.M. Cell cycle control of Notch signaling and the functional regionalization of the neuroepithelium during vertebrate neurogenesis. Int. J. Dev. Biol. 53, 895–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Taverna, E. & Huttner, W.B. Neural progenitor nuclei IN motion. Neuron 67, 906–914 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Willardsen, M.I. & Link, B.A. Cell biological regulation of division fate in vertebrate neuroepithelial cells. Dev. Dyn. 240, 1865–1879 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takahashi, T., Nowakowski, R.S. & Caviness, V.S. Jr. The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J. Neurosci. 16, 6183–6196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noctor, S.C., Martinez-Cerdeno, V. & Kriegstein, A.R. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J. Comp. Neurol. 508, 28–44 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Haubensak, W., Attardo, A., Denk, W. & Huttner, W.B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl. Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miyata, T. et al. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131, 3133–3145 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Doe, C.Q. Neural stem cells: balancing self-renewal with differentiation. Development 135, 1575–1587 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Manzini, M.C. & Walsh, C.A. What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr. Opin. Genet. Dev. 21, 333–339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bärenz, F., Mayilo, D. & Gruss, O.J. Centriolar satellites: Busy orbits around the centrosome. Eur. J. Cell Biol. 90, 983–989 (2011).

    Article  PubMed  Google Scholar 

  22. Dehay, C. & Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci. 8, 438–450 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Lange, C., Huttner, W.B. & Calegari, F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5, 320–331 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Bultje, R.S. et al. Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63, 189–202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, X. et al. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461, 947–955 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwamborn, J.C., Berezikov, E. & Knoblich, J.A. The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136, 913–925 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gauthier-Fisher, A. et al. Lfc and Tctex-1 regulate the genesis of neurons from cortical precursor cells. Nat. Neurosci. 12, 735–744 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Baye, L.M. & Link, B.A. Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis. J. Neurosci. 27, 10143–10152 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Del Bene, F., Wehman, A.M., Link, B.A. & Baier, H. Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 134, 1055–1065 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murciano, A., Zamora, J., Lopez-Sanchez, J. & Frade, J.M. Interkinetic nuclear movement may provide spatial clues to the regulation of neurogenesis. Mol. Cell. Neurosci. 21, 285–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Ge, X., Frank, C.L., Calderon de Anda, F. & Tsai, L.H. Hook3 interacts with PCM1 to regulate pericentriolar material assembly and the timing of neurogenesis. Neuron 65, 191–203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie, Z. et al. Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron 56, 79–93 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schenk, J., Wilsch-Brauninger, M., Calegari, F. & Huttner, W.B. Myosin II is required for interkinetic nuclear migration of neural progenitors. Proc. Natl. Acad. Sci. USA 106, 16487–16492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cappello, S. et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat. Neurosci. 9, 1099–1107 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Tsai, J.W., Chen, Y., Kriegstein, A.R. & Vallee, R.B. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J. Cell Biol. 170, 935–945 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kosodo, Y. et al. Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. EMBO J. 30, 1690–1704 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsai, J.W., Lian, W.N., Kemal, S., Kriegstein, A.R. & Vallee, R.B. Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat. Neurosci. 13, 1463–1471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Côté, J.F. & Vuori, K. Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J. Cell Sci. 115, 4901–4913 (2002).

    Article  PubMed  Google Scholar 

  39. Meller, N., Merlot, S. & Guda, C. CZH proteins: a new family of Rho-GEFs. J. Cell Sci. 118, 4937–4946 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Miyamoto, Y. & Yamauchi, J. Cellular signaling of Dock family proteins in neural function. Cell. Signal. 22, 175–182 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Laurin, M. et al. The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo. Proc. Natl. Acad. Sci. USA 105, 15446–15451 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412, 826–831 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, Q. et al. Loss of modifier of cell adhesion reveals a pathway leading to axonal degeneration. J. Neurosci. 29, 118–130 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Watabe-Uchida, M., John, K.A., Janas, J.A., Newey, S.E. & Van Aelst, L. The Rac activator DOCK7 regulates neuronal polarity through local phosphorylation of stathmin/Op18. Neuron 51, 727–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Yamauchi, J., Miyamoto, Y., Chan, J.R. & Tanoue, A. ErbB2 directly activates the exchange factor Dock7 to promote Schwann cell migration. J. Cell Biol. 181, 351–365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gergely, F. et al. The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc. Natl. Acad. Sci. USA 97, 14352–14357 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peset, I. & Vernos, I. The TACC proteins: TACC-ling microtubule dynamics and centrosome function. Trends Cell Biol. 18, 379–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Blasius, A.L. et al. Mice with mutations of Dock7 have generalized hypopigmentation and white-spotting but show normal neurological function. Proc. Natl. Acad. Sci. USA 106, 2706–2711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Minobe, S. et al. Rac is involved in the interkinetic nuclear migration of cortical progenitor cells. Neurosci. Res. 63, 294–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, X., Hashimoto-Torii, K., Torii, M., Ding, C. & Rakic, P. Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J. Neurosci. 30, 4197–4209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Janas, J., Skowronski, J. & Van Aelst, L. Lentiviral delivery of RNAi in hippocampal neurons. Methods Enzymol. 406, 593–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Kim, W.Y. et al. GSK-3 is a master regulator of neural progenitor homeostasis. Nat. Neurosci. 12, 1390–1397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shitamukai, A., Konno, D. & Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31, 3683–3695 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Van Aelst laboratory, E.-E. Govek and J. Skowronski for discussions and/or critical reading of the manuscript. We thank N. Gray and J.W. Tsai for technical advice regarding the in utero electroporation procedure and K. John for yeast two-hybrid screening. We also thank F. Matsuzaki (RIKEN Center for Developmental Biology) and L.-H. Tsai (Massachusetts Institute of Technology) for reagents. This work was supported by US National Institutes of Health grant MH082808 and a New York STARR consortium grant to L.V.A. C.-L.W. is supported by US National Institutes of Health research training grant T32 CA 148056-1.

Author information

Authors and Affiliations

Authors

Contributions

Y.-T.Y., C.-L.W. and L.V.A. conceived and designed the project. Y.-T.Y. and C.-L.W. performed all the experiments and prepared the figures. L.V.A. wrote the manuscript.

Corresponding author

Correspondence to Linda Van Aelst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Data (PDF 6851 kb)

Supplementary Video 1

Example of a control vector expressing RGC (top left cell) undergoing bl-to-ap INM in VZ of neocortex. Time-lapse imaging was carried out on acute cortical slices 2 d after in utero electroporation of plasmids expressing empty control vector, and EGFP (green) and mKO2-F (red) fluorescent markers (at E15.5). Images acquired over an 8-h time period are shown; time (in min) is indicated on the top. Note: the cell body of the RGC migrates steadily toward the ventricle. After about 5 h, it reaches the ventricular (apical) surface, and the cell subsequently divides at the ventricular surface. (AVI 230 kb)

Supplementary Video 2

Example 1 of a DOCK7-overexpressing RGC (cell in the middle) undergoing bl-to-ap INM in VZ of neocortex. Time-lapse imaging was carried out on acute cortical slices 2 d after in utero electroporation of plasmids expressing FLAG-DOCK7, and EGFP (green) and mKO2-F (red) fluorescent markers (at E15.5). Images acquired over an 8-h time period are shown; time (in min) is indicated on the top. Note: the cell body of the RGC remains at its original basal position for about 5 h, which is followed by cell division away from the ventricular surface. (AVI 190 kb)

Supplementary Video 3

Example 2 of a DOCK7-overexpressing RGC (cell in upper middle) undergoing bl-to-ap INM in VZ of neocortex. Time-lapse imaging was carried out on acute cortical slices 2 d after in utero electroporation of plasmids expressing FLAG-DOCK7, and EGFP (green) and mKO2-F (red) fluorescent markers (at E15.5). Images acquired over an 8-h time period are shown; time (in min) is indicated on the top. Note: the cell body of the RGC remains at its basal position for about 4.5 h and then moves over a very short distance toward the ventricle, which is followed by cell division away from the ventricular surface. (AVI 235 kb)

Supplementary Video 4

Example of a control scr#1 shRNA–expressing RGC (cell in the middle) undergoing bl-to-ap INM in VZ of neocortex. Time-lapse imaging was carried out on acute cortical slices 2 d after in utero electroporation of plasmids expressing scr#1 shRNA, and EGFP (green) and mKO2-F (red) fluorescent markers (at E15.5). Images acquired over an 8-h time period are shown; time (in min) is indicated on the top. Note: the cell body of the RGC migrates steadily toward the ventricle. After about 5 h, it reaches the ventricular (apical) surface and the cell subsequently divides at the ventricular surface. (AVI 224 kb)

Supplementary Video 5

Example 1 of a Dock7#2 shRNA expressing RGC (cell in the middle) undergoing bl-to-ap INM in VZ of neocortex. Time-lapse imaging was carried out on acute cortical slices 2 d after in utero electroporation of plasmids expressing Dock7#2 shRNA, and EGFP (green) and mKO2-F (red) fluorescent markers (at E15.5). Images acquired over an 8-h time period are shown; time (in min) is indicated on the top. Note: the cell body of the RGC migrates considerably faster to the ventricle surface than that of the control scr#1 shRNA–expressing RGC, where it then remains for about 3 h before the cell undergoes apical mitosis. (AVI 204 kb)

Supplementary Video 6

Example 2 of a Dock7#2 shRNA expressing RGC (cell in the middle) undergoing bl-to-ap INM in VZ of neocortex. Time-lapse imaging was carried out on acute cortical slices 2 d after in utero electroporation of plasmids expressing Dock7#2 shRNA, and EGFP (green) and mKO2-F (red) fluorescent markers (at E15.5). Images acquired over an 8-h time period are shown; time (in min) is indicated on the top. Note: the cell body of the RGC migrates considerably faster to the ventricle surface than that of the control scr#1 shRNA expressing RGC, where it then remains for >4 h before the cell undergoes apical mitosis. (AVI 246 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YT., Wang, CL. & Van Aelst, L. DOCK7 interacts with TACC3 to regulate interkinetic nuclear migration and cortical neurogenesis. Nat Neurosci 15, 1201–1210 (2012). https://doi.org/10.1038/nn.3171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing