Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A non-canonical pathway for mammalian blue-green color vision

Subjects

Abstract

The dynamic range of visual coding is extended by having separate ganglion cell types that respond to light increments and decrements. Although the primordial color vision system in mammals contains a well-characterized ganglion cell that responds to blue light increments (a blue On center cell), less is known about ganglion cells that respond to blue light decrements (blue Off center cells). We identified a regular mosaic of blue Off center ganglion cells in the ground squirrel. Contrary to the standard scheme, blue Off responses came from a blue On bipolar and inverting amacrine cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ground squirrel retina contains an S-Off/M-On ganglion cell type.
Figure 2: Pharmacological dissection of S-Off/M-On ganglion cell responses.

Similar content being viewed by others

References

  1. Yin, L. et al. J. Neurosci. 29, 2706–2724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dacey, D.M. & Lee, B.B. Nature 367, 731–735 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Field, G.D. et al. J. Neurosci. 27, 13261–13272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hemmi, J.M., James, A. & Taylor, W.R. J. Vis. 2, 608–617 (2002).

    Article  PubMed  Google Scholar 

  5. Dacey, D.M. in The Cognitive Neurosciences (ed. Gazzaniga, M.S.) 281–301 (MIT Press, Cambridge, Massachusetts, 2004).

  6. Dacey, D.M. et al. Nature 433, 749–754 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Michael, C.R. J. Neurophysiol. 31, 268–282 (1968).

    Article  CAS  PubMed  Google Scholar 

  8. Jacobs, G.H. & Tootell, R.B. J. Neurophysiol. 45, 891–902 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. Wiesel, T.N. & Hubel, D.H. J. Neurophysiol. 29, 1115–1156 (1966).

    Article  CAS  PubMed  Google Scholar 

  10. Tailby, C. et al. J. Physiol. (Lond.) 586, 5947–5967 (2008).

    Article  CAS  Google Scholar 

  11. Litke, A.M. et al. IEEE Trans. Nucl. Sci. 51, 1434–1440 (2004).

    Article  Google Scholar 

  12. Kryger, Z. et al. Vis. Neurosci. 15, 685–691 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Li, W. & DeVries, S.H. Nat. Neurosci. 9, 669–675 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Crook, J.D. et al. J. Neurosci. 29, 8372–8387 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manookin, M.B. et al. J. Neurosci. 28, 4136–4150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saszik, S. & DeVries, S.H. J. Neurosci. 32, 297–307 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ala-Laurila, P. et al. Nat. Neurosci. 14, 1309–1316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kraft, T.W. J. Physiol. (Lond.) 404, 199–213 (1988).

    Article  CAS  Google Scholar 

  19. Wässle, H. & Riemann, H.J. Proc. R. Soc. Lond. B Biol. Sci. 200, 441–461 (1978).

    Article  PubMed  Google Scholar 

  20. Petrusca, D. et al. J. Neurosci. 27, 11019–11027 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A.M. Litke for technical development and scientific discussions, W. Dabrowski, K. Mathieson, P. Hottowy and S. Kachiguine for technical development, M. Krause and J. Roebber for technical assistance with the experiments, and G.D. Field and B. Szmajda for providing comments on the manuscript. This work was supported by a US National Institutes of Health grant (R01EY018204) to S.H.D. and a Burroughs Wellcome Fund Career Award at the Scientific Interface to A.S.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding authors

Correspondence to Alexander Sher or Steven H DeVries.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 741 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sher, A., DeVries, S. A non-canonical pathway for mammalian blue-green color vision. Nat Neurosci 15, 952–953 (2012). https://doi.org/10.1038/nn.3127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing