Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Social influences on neuroplasticity: stress and interventions to promote well-being


Experiential factors shape the neural circuits underlying social and emotional behavior from the prenatal period to the end of life. These factors include both incidental influences, such as early adversity, and intentional influences that can be produced in humans through specific interventions designed to promote prosocial behavior and well-being. Here we review important extant evidence in animal models and humans. Although the precise mechanisms of plasticity are still not fully understood, moderate to severe stress appears to increase the growth of several sectors of the amygdala, whereas the effects in the hippocampus and prefrontal cortex tend to be opposite. Structural and functional changes in the brain have been observed with cognitive therapy and certain forms of meditation and lead to the suggestion that well-being and other prosocial characteristics might be enhanced through training.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Chronic stress causes neurons to shrink or grow, but not necessarily to die.
Figure 2: Physically abused children show alterations in orbitofrontal (OFC) volume compared with typically developing children, and volume shrinkage in this region is related to measures of family stress.
Figure 3: Anatomically segmented amygdala volumes are larger in later-adopted post-institutionalized children.
Figure 4: Change in gray matter volume in the right basolateral amygdala from pre to post 8 weeks of MBSR was associated with decreases in perceived stress over this same time period.


  1. 1

    Adolphs, R. Conceptual challenges and directions for social neuroscience. Neuron 65, 752–767 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Erickson, K.I. et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 108, 3017–3022 (2011).

    Article  PubMed  Google Scholar 

  3. 3

    Disner, S.G., Beevers, C.G. & Haigh, E.A.P. & Beck, A.T. Neural mechanisms of the cognitive model of depression. Nat. Rev. Neurosci. 12, 467–477 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Clark, D.A. & Beck, A.T. Cognitive theory and therapy of anxiety and depression: convergence with neurobiological findings. Trends Cogn. Sci. 14, 418–424 (2010).

    Article  PubMed  Google Scholar 

  5. 5

    Lutz, A., Slagter, H., Dunne, J.D. & Davidson, R.J. Attention regulation and monitoring in meditation. Trends Cogn. Sci. 12, 163–169 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Kuhl, P.K. Brain mechanisms in early language acquisition. Neuron 67, 713–727 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Nelson, C.A. et al. Cognitive recovery in socially deprived young children: the Bucharest Early Intervention Project. Science 318, 1937–1940 (2007).

    Article  CAS  Google Scholar 

  8. 8

    Sullivan, R.M. & Holman, P.J. Transitions in sensitive period attachment learning in infancy: the role of corticosterone. Neurosci. Biobehav. Rev. 34, 835–844 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Bavelier, D., Levi, D.M., Li, R.W., Dan, Y. & Hensch, T.K. Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J. Neurosci. 30, 14964–14971 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Carlson, M.C. et al. Evidence for neurocognitive plasticity in at-risk older adults: the experience corps program. J. Gerontol. A Biol. Sci. Med. Sci. 64, 1275–1282 (2009).

    Article  PubMed  Google Scholar 

  11. 11

    Hölzel, B.K. et al. Stress reduction correlates with structural changes in the amygdala. Soc. Cogn. Affect. Neurosci. 5, 11–17 (2010).

    Article  PubMed  Google Scholar 

  12. 12

    Durlak, J.A., Weissberg, R.P., Dymnicki, A.B., Taylor, R.D. & Schellinger, K.B. The impact of enhancing students' social and emotional learning: a meta-analysis of school-based universal interventions. Child Dev. 82, 405–432 (2011).

    Article  PubMed  Google Scholar 

  13. 13

    Diamond, A. & Lee, K. Interventions shown to aid executive function development in children 4 to 12 years old. Science 333, 959–964 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Bennett, E.L., Diamond, M.C., Krech, D. & Rosenzweig, M.R. Chemical and anatomical plasticity of the brain. Science 146, 610–619 (1964).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Hebb, D.O. The Organization of Behavior: a Neuropsychological Theory (Wiley, New York, 1949).

    Google Scholar 

  16. 16

    Diamond, M.C. The aging brain: some enlightening and optimistic results. Am. Sci. 66, 66–71 (1978).

    CAS  PubMed  Google Scholar 

  17. 17

    Markham, J.A. & Greenough, W.T. Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 1, 351–363 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    McEwen, B.S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    Article  Google Scholar 

  19. 19

    Bloss, E.B., Janssen, W.G., McEwen, B.S. & Morrison, J.H. Interactive effects of stress and aging on structural plasticity in the prefrontal cortex. J. Neurosci. 30, 6726–6731 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Liston, C. & Gan, W.-B. Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proc. Natl. Acad. Sci. USA 108, 16074–16079 (2011).

    Article  Google Scholar 

  21. 21

    Popoli, M., Yan, Z., McEwen, B.S. & Sanacora, G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 13, 22–37 (2012).

    Article  CAS  Google Scholar 

  22. 22

    McEwen, B.S. & Milner, T.A. Hippocampal formation: shedding light on the influence of sex and stress on the brain. Brain Res. Rev. 55, 343–355 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    McEwen, B.S. & Alves, S.E. Estrogen actions in the central nervous system. Endocr. Rev. 20, 279–307 (1999).

    CAS  PubMed  Google Scholar 

  24. 24

    Dumitriu, D., Rapp, P.R., McEwen, B.S. & Morrison, J.H. Estrogen and the aging brain: an elixir for the weary cortical network. Ann. NY Acad. Sci. 1204, 104–112 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Chen, J.-R. et al. Gonadal hormones modulate the dendritic spine densities of primary cortical pyramidal neurons in adult female rat. Cereb. Cortex 19, 2719–2727 (2009).

    Article  PubMed  Google Scholar 

  26. 26

    Cameron, H.A. & Gould, E. The control of neuronal birth and survival. in Receptor Dynamics in Neural Development (ed. C.A. Shaw) 141–157 (CRC Press, 1996).

    Google Scholar 

  27. 27

    Kaplan, M.S. Environment complexity stimulates visual cortex neurogenesis: death of a dogma and a research career. Trends Neurosci. 24, 617–620 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Altman, J. & Bayer, S.A. Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells. J. Comp. Neurol. 301, 325–342 (1990).

    Article  CAS  Google Scholar 

  29. 29

    Nottebohm, F. From bird song to neurogenesis. Sci. Am. 260, 74–79 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Brown, J. et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur. J. Neurosci. 17, 2042–2046 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Kozorovitskiy, Y. & Gould, E. Dominance hierarchy influences adult neurogenesis in the dentate gyrus. J. Neurosci. 24, 6755–6759 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Gould, E., McEwen, B.S., Tanapat, P., Galea, L.A. & Fuchs, E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci. 17, 2492–2498 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Magariños, A.M., McEwen, B.S., Flügge, G. & Fuchs, E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J. Neurosci. 16, 3534–3540 (1996).

    Article  PubMed  Google Scholar 

  34. 34

    Vyas, A., Mitra, R., Shankaranarayana Rao, B.S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Liston, C. et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci. 26, 7870–7874 (2006).

    Article  CAS  Google Scholar 

  36. 36

    McEwen, B.S. & Gianaros, P.J. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med. 62, 431–445 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Shonkoff, J.P., Boyce, W.T. & McEwen, B.S. Neuroscience, molecular biology and the childhood roots of health disparities: building a new framework for health promotion and disease prevention. J. Am. Med. Assoc. 301, 2252–2259 (2009).

    Article  CAS  Google Scholar 

  38. 38

    Anda, R.F., Butchart, A., Felitti, V.J. & Brown, D.W. Building a framework for global surveillance of the public health implications of adverse childhood experiences. Am. J. Prev. Med. 39, 93–98 (2010).

    Article  PubMed  Google Scholar 

  39. 39

    Isgor, C., Kabbaj, M., Akil, H. & Watson, S.J. Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus 14, 636–648 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Moriceau, S. & Sullivan, R.M. Maternal presence serves as a switch between learning fear and attraction in infancy. Nat. Neurosci. 9, 1004–1006 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Kaufman, D. et al. Early appearance of the metabolic syndrome in socially reared bonnet macaques. J. Clin. Endocrinol. Metab. 90, 404–408 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Coplan, J.D. et al. Variable foraging demand rearing: Sustained elevations in cisternal cerebrospinal fluid corticotropin-releasing factor concentrations in adult primates. Biol. Psychiatry 50, 200–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Christoffel, D.J. et al. IkB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J.Neurosci. 31, 314–321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Miczek, K.A., Yap, J.J. & Covington, H.E. Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol. Ther. 120, 102–128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Robinson, T.E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47 Suppl 1, 33–46 (2004).

    Article  CAS  Google Scholar 

  46. 46

    Russo, S.J. et al. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 33, 267–276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Roitman, M.F., Na, E., Anderson, G., Jones, T.A. & Bernstein, I.L. Induction of a salt appetite alters dendritic morphology in nucleus accumbens and sensitizes rats to amphetamine. J. Neurosci. 22, RC225 (2002).

    Article  PubMed  Google Scholar 

  48. 48

    Levine, S., Haltmeyer, G.C., Karas, G.G. & Denenberg, V.H. Physiological and behavioral effects of infantile stimulation. Physiol. Behav. 2, 55–59 (1967).

    Article  CAS  Google Scholar 

  49. 49

    Meaney, M.J. & Szyf, M. Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin. Neurosci. 7, 103–123 (2005).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Akers, K.G. et al. Social competitiveness and plasticity of neuroendocrine function in old age: influence of neonatal novelty exposure and maternal care reliability. PLoS ONE 3, e2840 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Tang, A.C., Akers, K.G., Reeb, B.C., Romeo, R.D. & McEwen, B.S. Programming social, cognitive and neuroendocrine development by early exposure to novelty. Proc. Natl. Acad. Sci. USA 103, 15716–15721 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Parker, K.J. & Maestripieri, D. Identifying key features of early stressful experiences that produce stress vulnerability and resilience in primates. Neurosci. Biobehav. Rev. 35, 1466–1483 (2011).

    Article  PubMed  Google Scholar 

  53. 53

    van Hasselt, F.N. et al. Adult hippocampal glucocorticoid receptor expression and dentate synaptic plasticity correlate with maternal care received by individuals early in life. Hippocampus 22, 255–266 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Parker, K.J., Buckmaster, C.L., Schatzberg, A.F. & Lyons, D.M. Prospective investigation of stress inoculation in young monkeys. Arch. Gen. Psychiatry 61, 933–941 (2004).

    Article  PubMed  Google Scholar 

  55. 55

    Parker, K.J., Buckmaster, C.L., Justus, K.R., Schatzberg, A.F. & Lyons, D.M. Mild early life stress enhances prefrontal-dependent response inhibition in monkeys. Biol. Psychiatry 57, 848–855 (2005).

    Article  PubMed  Google Scholar 

  56. 56

    Katz, M. et al. Prefrontal plasticity and stress inoculation-induced resilience. Dev. Neurosci. 31, 293–299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Maya Vetencourt, J.F. et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320, 385–388 (2008).

    Article  CAS  Google Scholar 

  58. 58

    Spolidoro, M. et al. Food restriction enhances visual cortex plasticity in adulthood. Nature Commun. 2, 320 (2011).

    Article  CAS  Google Scholar 

  59. 59

    Southwell, D.G., Froemke, R.C., Alvarez-Buylla, A., Stryker, M.P. & Gandhi, S.P. Cortical plasticity induced by inhibitory neuron transplantation. Science 327, 1145–1148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Duman, R.S. & Monteggia, L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116–1127 (2006).

    Article  CAS  Google Scholar 

  61. 61

    Chollet, F. et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomized placebo-controlled trial. Lancet Neurol. 10, 123–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Castrén, E. & Rantamäki, T. The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev. Neurobiol. 70, 289–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Shonkoff, J.P. & Garner, A.S. The lifelong effects of early childhood adversity and toxic stress. Pediatrics 129, 232–246 (2012).

    Article  Google Scholar 

  64. 64

    Shonkoff, J.P. Protecting brains, not simply stimulating minds. Science 333, 982–983 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Heim, C., Shugart, M., Craighead, W.E. & Nemeroff, C.B. Neurobiological and psychiatric consequences of child abuse and neglect. Dev. Psychobiol. 52, 671–690 (2010).

    Article  PubMed  Google Scholar 

  66. 66

    Gould, F. et al. The effects of child abuse and neglect on cognitive functioning in adulthood. J. Psychiatr. Res. 46, 500–506 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67

    Choi, J., Jeong, B., Rohan, M.L., Polcari, A.M. & Teicher, M.H. Preliminary evidence for white matter tract abnormalities in young adults exposed to parental verbal abuse. Biol. Psychiatry 65, 227–234 (2009).

    Article  PubMed  Google Scholar 

  68. 68

    Hanson, J.L. et al. Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based morphometry investigation of brain structure and behavioral risk. J. Neurosci. 30, 7466–7472 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Loman, M.M. & Gunnar, M.R. Early experience and the development of stress reactivity and regulation in children. Neurosci. Biobehav. Rev. 34, 867–876 (2010).

    Article  PubMed  Google Scholar 

  70. 70

    McGowan, P.O. et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12, 342–348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Tottenham, N. et al. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev. Sci. 13, 46–61 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72

    Lupien, S.J. et al. Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc. Natl. Acad. Sci. USA 108, 14324–14329 (2011).

    Article  PubMed  Google Scholar 

  73. 73

    Morey, R.A. et al. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage 45, 855–866 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Tottenham, N. & Sheridan, M.A. A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Front. Hum. Neurosci. 3, 68 (2009).

    Google Scholar 

  75. 75

    Nacewicz, B.M. et al. Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Arch. Gen. Psychiatry 63, 1417–1428 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76

    Mosconi, M.W. et al. Longitudinal study of amygdala volume and joint attention in 2- to 4-year-old children with autism. Arch. Gen. Psychiatry 66, 509–516 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. 77

    Ochsner, K.N. & Gross, J.J. The cognitive control of emotion. Trends Cogn. Sci. 9, 242–249 (2005).

    Article  Google Scholar 

  78. 78

    Wager, T.D., Davidson, M.L., Hughes, B.L. & Lindquist, M.A. & Ochsner, K.N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Urry, H.L. et al. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J. Neurosci. 26, 4415–4425 (2006).

    Article  CAS  Google Scholar 

  80. 80

    Davidson, R.J. Well-being and affective style: neural substrates and biobehavioural correlates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1395–1411 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Davidson, R.J., Putnam, K.M. & Larson, C.L. Dysfunction in the neural circuitry of emotion regulation: a possible prelude to violence. Science 289, 591–594 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Johnstone, T., van Reekum, C.M., Urry, H.L., Kalin, N.H. & Davidson, R.J. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J. Neurosci. 27, 8877–8884 (2007).

    Article  CAS  Google Scholar 

  83. 83

    Kim, M.J. & Whalen, P.J. The structural integrity of an amygdala-prefrontal pathway predicts trait anxiety. J. Neurosci. 29, 11614–8 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Coan, J.A., Schaefer, H.S. & Davidson, R.J. Lending a hand: social regulation of the neural response to threat. Psychol. Sci. 17, 1032–1039 (2006).

    Article  PubMed  Google Scholar 

  85. 85

    Uchino, B.N., Cacioppo, J.T. & Kiecolt-Glaser, J.K. The relationship between social support and physiological processes: a review with emphasis on underlying mechanisms and implications for health. Psychol. Bull. 119, 488–531 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Buss, C. et al. Maternal care modulates the relationship between prenatal risk and hippocampal volume in women but not in men. J. Neurosci. 27, 2592–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Fava, G.A., Rafanelli, C., Cazzaro, M., Conti, S. & Grandi, S. Well-being therapy. A novel psychotherapeutic approach for residual symptoms of affective disorders. Psychol. Med. 28, 475–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    DeRubeis, R.J., Siegle, G.J. & Hollon, S.D. Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nat. Rev. Neurosci. 9, 788–796 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    de Lange, F.P. et al. Increase in prefrontal cortical volume following cognitive behavioural therapy in patients with chronic fatigue syndrome. Brain 131, 2172–2180 (2008).

    Article  PubMed  Google Scholar 

  90. 90

    Hofmann, S.G., Grossman, P. & Hinton, D.E. Loving-kindness and compassion meditation: potential for psychological interventions. Clin. Psychol. Rev. 31, 1126–1132 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    Lutz, A., Greischar, L.L., Rawlings, N.B., Ricard, M. & Davidson, R.J. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc. Natl. Acad. Sci. USA 101, 16369 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Lutz, A., Brefczynski-Lewis, J., Johnstone, T. & Davidson, R.J. Regulation of the neural circuitry of emotion by compassion meditation: effects of meditative expertise. PLoS One 3, e1897 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Uhlhaas, P.J., Roux, F., Rodriguez, E., Rotarska-Jagiela, A. & Singer, W. Neural synchrony and the development of cortical networks. Trends Cogn. Sci. 14, 72–80 (2010).

    Article  PubMed  Google Scholar 

  94. 94

    Kemeny, M.E. et al. Contemplative/emotion training reduces negative emotional behavior and promotes prosocial responses. Emotion published online (12 December 2011).

  95. 95

    Farb, N.A. et al. Attending to the present: mindfulness meditation reveals distinct neural modes of self-reference. Soc. Cogn. Affect. Neurosci. 2, 313–322 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  96. 96

    Brewer, J.A. et al. Meditation experience is associated with differences in default mode network activity and connectivity. Proc. Natl. Acad. Sci. USA 108, 1–6 (2011).

    Article  CAS  Google Scholar 

  97. 97

    Christoff, K., Gordon, A.M., Smallwood, J., Smith, R. & Schooler, J.W. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl. Acad. Sci. USA 106, 8719–8724 (2009).

    Article  PubMed  Google Scholar 

  98. 98

    Killingsworth, M.A. & Gilbert, D.T. A wandering mind is an unhappy mind. Science 330, 932 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. 99

    Chambers, R., Gullone, E. & Allen, N.B. Mindful emotion regulation: an integrative review. Clin. Psychol. Rev. 29, 560–572 (2009).

    Article  PubMed  Google Scholar 

  100. 100

    Moffitt, T.E. et al. A gradient of childhood self-control predicts health, wealth, and public safety. Proc. Natl. Acad. Sci. USA 108, 2693–2698 (2011).

    Article  PubMed  Google Scholar 

Download references


R.J.D. is supported by grants from the National Institute of Mental Health (R01-MH43454 and P50-MH084051), the National Center for Complementary and Alternative Medicine (P01-AT004952), the Fetzer Institute, the John Templeton Foundation, and gifts from Bryant Wangard and Ralph Robinson, Ann Down, Keith and Arlene Bronstein, and the John W. Kluge Foundation. B.S.M. is supported by US National Institutes of Health grants R01 MH41256 and 5P01 MH58911.

Author information



Corresponding authors

Correspondence to Richard J Davidson or Bruce S McEwen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Davidson, R., McEwen, B. Social influences on neuroplasticity: stress and interventions to promote well-being. Nat Neurosci 15, 689–695 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing