Neural mechanisms of social risk for psychiatric disorders


Mental health and social life are intimately inter-related, as demonstrated by the frequent social deficits of psychiatric patients and the increased rate of psychiatric disorders in people exposed to social environmental adversity. Here, we review emerging evidence that combines epidemiology, social psychology and neuroscience to bring neural mechanisms of social risk factors for mental illness into focus. In doing so, we discuss existing evidence on the effects of common genetic risk factors in social neural pathways and outline the need for integrative approaches to identify the converging mechanisms of social environmental and genetic risk in brain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A simplified taxonomy of neural areas supporting human social functions, shown on lateral and medial surfaces (top and bottom, respectively).
Figure 2: Genetic and social environmental risk factors for mental illness converge on higher order regulatory modules of the human social-emotional processing network.


  1. 1

    van Os, J., Rutten, B.P. & Poulton, R. Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr. Bull. 34, 1066–1082 (2008).

    Article  Google Scholar 

  2. 2

    Penn, D.L., Sanna, L.J. & Roberts, D.L. Social cognition in schizophrenia: an overview. Schizophr. Bull. 34, 408–411 (2008).

    Article  Google Scholar 

  3. 3

    Martin, D.J., Garske, J.P. & Davis, M.K. Relation of the therapeutic alliance with outcome and other variables: a meta-analytic review. J. Consult. Clin. Psychol. 68, 438–450 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Adolphs, R. The social brain: neural basis of social knowledge. Annu. Rev. Psychol. 60, 693–716 (2009).

    Article  Google Scholar 

  5. 5

    Meyer-Lindenberg, A. & Weinberger, D.R. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat. Rev. Neurosci. 7, 818–827 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Heim, C. & Binder, E.B. Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp. Neurol. 233, 102–111 (2012).

    Article  Google Scholar 

  7. 7

    Krabbendam, L. & van Os, J. Schizophrenia and urbanicity: a major environmental influence–conditional on genetic risk. Schizophr. Bull. 31, 795–799 (2005).

    Article  Google Scholar 

  8. 8

    Pedersen, C.B. & Mortensen, P.B. Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Arch. Gen. Psychiatry 58, 1039–1046 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Bourque, F., van der Ven, E. & Malla, A. A meta-analysis of the risk for psychotic disorders among first- and second-generation immigrants. Psychol. Med. 41, 897–910 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Zammit, S. et al. Individuals, schools, and neighborhood: a multilevel longitudinal study of variation in incidence of psychotic disorders. Arch. Gen. Psychiatry 67, 914–922 (2010).

    Article  Google Scholar 

  11. 11

    Pruessner, J.C., Champagne, F., Meaney, M.J. & Dagher, A. Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. J. Neurosci. 24, 2825–2831 (2004).

    CAS  Article  Google Scholar 

  12. 12

    McGowan, P.O. et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12, 342–348 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Lederbogen, F. et al. City living and urban upbringing affect neural social stress processing in humans. Nature 474, 498–501 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Selten, J.P. & Cantor-Graae, E. Hypothesis: social defeat is a risk factor for schizophrenia? Br. J. Psychiatry Suppl. 51, s9–s12 (2007).

    Article  Google Scholar 

  15. 15

    Zink, C.F. et al. Know your place: neural processing of social hierarchy in humans. Neuron 58, 273–283 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Knafo, A. & Plomin, R. Prosocial behavior from early to middle childhood: genetic and environmental influences on stability and change. Dev. Psychol. 42, 771–786 (2006).

    Article  Google Scholar 

  17. 17

    Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Tost, H., Bilek, E. & Meyer-Lindenberg, A. Brain connectivity in psychiatric imaging genetics. Neuroimage doi:10.1016/j.neuroimage.2011.11.007 (9 November 2011).

  19. 19

    Meyer-Lindenberg, A., Domes, G., Kirsch, P. & Heinrichs, M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 12, 524–538 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Kirsch, P. et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci. 25, 11489–11493 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Viviani, D. et al. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 333, 104–107 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Zink, C.F., Stein, J.L., Kempf, L., Hakimi, S. & Meyer-Lindenberg, A. Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. J. Neurosci. 30, 7017–7022 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Heim, C. et al. Lower CSF oxytocin concentrations in women with a history of childhood abuse. Mol. Psychiatry 14, 954–958 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Bakermans-Kranenburg, M.J. & van Ijzendoorn, M.H. Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc. Cogn. Affect. Neurosci. 3, 128–134 (2008).

    Article  Google Scholar 

  25. 25

    Tost, H. et al. A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc. Natl. Acad. Sci. USA 107, 13936–13941 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Wu, S. et al. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol. Psychiatry 58, 74–77 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Chen, F.S. et al. Common oxytocin receptor gene (OXTR) polymorphism and social support interact to reduce stress in humans. Proc. Natl. Acad. Sci. USA 108, 19937–19942 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Thompson, R.J., Parker, K.J., Hallmayer, J.F., Waugh, C.E. & Gotlib, I.H. Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. Psychoneuroendocrinology 36, 144–147 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Tost, H. et al. Neurogenetic effects of OXTR rs2254298 in the extended limbic system of healthy Caucasian adults. Biol. Psychiatry 70, e37–e39; author reply e41–e42 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Inoue, H. et al. Association between the oxytocin receptor gene and amygdalar volume in healthy adults. Biol. Psychiatry 68, 1066–1072 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Hammock, E.A. & Young, L.J. Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 308, 1630–1634 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Walum, H. et al. Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proc. Natl. Acad. Sci. USA 105, 14153–14156 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Meyer-Lindenberg, A. et al. Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Mol. Psychiatry 14, 968–975 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Kurth, F. et al. Diminished gray matter within the hypothalamus in autism disorder: a potential link to hormonal effects? Biol. Psychiatry 70, 278–282 (2011).

    Article  Google Scholar 

  35. 35

    Gillis, R.F. & Rouleau, G.A. The ongoing dissection of the genetic architecture of autistic spectrum disorder. Mol. Autism 2, 12 (2011).

    Article  Google Scholar 

  36. 36

    Buckholtz, J.W. & Meyer-Lindenberg, A. MAOA and the neurogenetic architecture of human aggression. Trends Neurosci. 31, 120–129 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Coplan, J.D. et al. Early-life stress, corticotropin-releasing factor, and serotonin transporter gene: a pilot study. Psychoneuroendocrinology 36, 289–293 (2011).

    CAS  Article  Google Scholar 

  38. 38

    Ressler, K.J. et al. Polymorphisms in CRHR1 and the serotonin transporter loci: gene × gene × environment interactions on depressive symptoms. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 153B, 812–824 (2010).

    CAS  PubMed  Google Scholar 

  39. 39

    O'Donovan, M.C., Craddock, N.J. & Owen, M.J. Genetics of psychosis; insights from views across the genome. Hum. Genet. 126, 3–12 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Bigos, K.L. et al. Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch. Gen. Psychiatry 67, 939–945 (2010).

    Article  Google Scholar 

  41. 41

    Erk, S. et al. Brain function in carriers of a genome-wide supported bipolar disorder variant. Arch. Gen. Psychiatry 67, 803–811 (2010).

    Article  Google Scholar 

  42. 42

    Mizrahi, R. et al. Increased stress-induced dopamine release in psychosis. Biol. Psychiatry 71, 561–567 (2012).

    CAS  Article  Google Scholar 

  43. 43

    Armbruster, D. et al. Children under stress – COMT genotype and stressful life events predict cortisol increase in an acute social stress paradigm. Int. J. Neuropsychopharmacol. doi:10.1017/S1461145711001763 (12 December 2011).

  44. 44

    Corcoran, C.M. et al. HPA axis function and symptoms in adolescents at clinical high risk for schizophrenia. Schizophr. Res. 135, 170–174 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Weinberger, D.R. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry 44, 660–669 (1987).

    CAS  Article  Google Scholar 

  46. 46

    Miczek, K.A., Nikulina, E.M., Shimamoto, A. & Covington, H.E. III. Escalated or suppressed cocaine reward, tegmental BDNF, and accumbal dopamine caused by episodic versus continuous social stress in rats. J. Neurosci. 31, 9848–9857 (2011).

    CAS  Article  Google Scholar 

  47. 47

    Montague, P.R. et al. Hyperscanning: simultaneous fMRI during linked social interactions. Neuroimage 16, 1159–1164 (2002).

    Article  Google Scholar 

  48. 48

    Szyf, M. The early life social environment and DNA methylation. Clin. Genet. doi:10.1111/j.1399-0004.2012.01843.x (13 February 2012).

  49. 49

    Brennand, K.J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011).

    CAS  Article  Google Scholar 

  50. 50

    Anonymous. A decade for psychiatric disorders. Nature 463, 9 (2010).

Download references


A.M.-L. gratefully acknowledges grant support by Deutsche Forschungsgemeinschaft (SFB 636, KFO 256), German Federal Ministry of Education and Research (BMBF NGFN-MooDs, Bernstein-Programm funding number 01GQ1003B) and European Union (NEWMEDS, OPTIMIZE, EU-GEI, EU-AIMS) during the preparation of this manuscript. H.T. gratefully acknowledges grant support by the German Federal Ministry of Education and Research (BMBF 01GQ1102).

Author information



Corresponding authors

Correspondence to Andreas Meyer-Lindenberg or Heike Tost.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meyer-Lindenberg, A., Tost, H. Neural mechanisms of social risk for psychiatric disorders. Nat Neurosci 15, 663–668 (2012).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing