VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission


Synaptic vesicles in the brain harbor several soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins. With the exception of synaptobrevin2, or VAMP2 (syb2), which is directly involved in vesicle fusion, the role of these SNAREs in neurotransmission is unclear. Here we show that in mice syb2 drives rapid Ca2+-dependent synchronous neurotransmission, whereas the structurally homologous SNARE protein VAMP4 selectively maintains bulk Ca2+-dependent asynchronous release. At inhibitory nerve terminals, up- or downregulation of VAMP4 causes a correlated change in asynchronous release. Biochemically, VAMP4 forms a stable complex with SNAREs syntaxin-1 and SNAP-25 that does not interact with complexins or synaptotagmin-1, proteins essential for synchronous neurotransmission. Optical imaging of individual synapses indicates that trafficking of VAMP4 and syb2 show minimal overlap. Taken together, these findings suggest that VAMP4 and syb2 diverge functionally, traffic independently and support distinct forms of neurotransmission. These results provide molecular insight into how synapses diversify their release properties by taking advantage of distinct synaptic vesicle–associated SNAREs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synaptic localization of VAMP4.
Figure 2: VAMP4 mediates evoked asynchronous neurotransmitter release.
Figure 3: VAMP4-mediated evoked neurotransmitter release is susceptible to slow Ca2+ buffering.
Figure 4: VAMP4 loss-of-function attenuates extent of asynchronous release.
Figure 5: Ternary complex of VAMP4 with syntaxin 1 and SNAP-25 does not engage complexins or synaptotagmin 1.
Figure 6: Trafficking of VAMP4 at central synapses.
Figure 7: VAMP4 traffics independently of syb2.
Figure 8: VAMP4 trafficking enables asynchronous release during intense activity.


  1. 1

    Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    Article  Google Scholar 

  2. 2

    Jahn, R., Lang, T. & Südhof, T.C. Membrane fusion. Cell 112, 519–533 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Jahn, R. & Scheller, R.H. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Rizo, J. & Südhof, T.C. Snares and Munc18 in synaptic vesicle fusion. Nat. Rev. Neurosci. 3, 641–653 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Bronk, P. et al. Differential effects of SNAP-25 deletion on Ca2+-dependent and Ca2+-independent neurotransmission. J. Neurophysiol. 98, 794–806 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Schoch, S. et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294, 1117–1122 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Washbourne, P. et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat. Neurosci. 5, 19–26 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Südhof, T.C. & Rothman, J.E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    Article  Google Scholar 

  9. 9

    Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Bethani, I. et al. Endosomal fusion upon SNARE knockdown is maintained by residual SNARE activity and enhanced docking. Traffic 10, 1543–1559 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Steegmaier, M., Klumperman, J., Foletti, D.L., Yoo, J.S. & Scheller, R.H. Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking. Mol. Biol. Cell 10, 1957–1972 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Peden, A.A., Park, G.Y. & Scheller, R.H. The di-leucine motif of vesicle-associated membrane protein 4 is required for its localization and AP-1 binding. J. Biol. Chem. 276, 49183–49187 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Reim, K. et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104, 71–81 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Liu, H., Dean, C., Arthur, C.P., Dong, M. & Chapman, E.R. Autapses and networks of hippocampal neurons exhibit distinct synaptic transmission phenotypes in the absence of synaptotagmin I. J. Neurosci. 29, 7395–7403 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Daw, M.I., Tricoire, L., Erdelyi, F., Szabo, G. & McBain, C.J. Asynchronous transmitter release from cholecystokinin-containing inhibitory interneurons is widespread and target-cell independent. J. Neurosci. 29, 11112–11122 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Chung, C., Barylko, B., Leitz, J., Liu, X. & Kavalali, E.T. Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission. J. Neurosci. 30, 1363–1376 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Deák, F., Shin, O.-H., Kavalali, E.T. & Südhof, T.C. Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion. J. Neurosci. 26, 6668–6676 (2006).

    Article  Google Scholar 

  19. 19

    Maximov, A. & Südhof, T.C. Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron 48, 547–554 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Chung, C., Deák, F. & Kavalali, E.T. Molecular substrates mediating lanthanide-evoked neurotransmitter release in central synapses. J. Neurophysiol. 100, 2089–2100 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  Google Scholar 

  23. 23

    Sara, Y., Virmani, T., Deák, F., Liu, X. & Kavalali, E.T. An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission. Neuron 45, 563–573 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Deák, F. et al. Rabphilin regulates SNARE-dependent re-priming of synaptic vesicles for fusion. EMBO J. 25, 2856–2866 (2006).

    Article  Google Scholar 

  25. 25

    Deák, F., Schoch, S., Liu, X., Südhof, T.C. & Kavalali, E.T. Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nat. Cell Bio. 6, 1102–1108 (2004).

    Article  Google Scholar 

  26. 26

    Groffen, A.J. et al. Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 327, 1614–1618 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Sun, J. et al. A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450, 676–682 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Atasoy, D. et al. Spontaneous and evoked glutamate release activates two populations of NMDA receptors with limited overlap. J. Neurosci. 28, 10151–10166 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Xu, J., Pang, Z.P., Shin, O.H. & Südhof, T.C. Synaptotagmin-1 functions as a Ca2+ sensor for spontaneous release. Nat. Neurosci. 12, 759–766 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Otsu, Y. et al. Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses. J. Neurosci. 24, 420–433 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99, 713–722 (1999).

    CAS  Article  Google Scholar 

  32. 32

    Sakaba, T. & Neher, E. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse. J. Neurosci. 21, 462–476 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Wölfel, M., Lou, X. & Schneggenburger, R. A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse. J. Neurosc. 27, 3198–3210 (2007).

    Article  Google Scholar 

  34. 34

    Ramirez, D.M. & Kavalali, E.T. Differential regulation of spontaneous and evoked neurotransmitter release at central synapses. Curr. Opin. Neurobiol. 21, 275–282 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Ramirez, D.M., Khvotchev, M., Trauterman, B. & Kavalali, E.T. Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73, 121–134 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Hua, Z. et al. v-SNARE composition distinguishes synaptic vesicle pools. Neuron 71, 474–487 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Fredj, N.B. & Burrone, J. A resting pool of vesicles is responsible for spontaneous vesicle fusion at the synapse. Nat. Neurosci. 12, 751–758 (2009).

    Article  Google Scholar 

  38. 38

    Rizzoli, S.O. & Betz, W.J. Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57–69 (2005).

    CAS  Article  Google Scholar 

  39. 39

    Clayton, E.L. et al. Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat. Neurosci. 13, 845–851 (2010).

    CAS  Article  Google Scholar 

  40. 40

    Kavalali, E.T. Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission. J. Physiol. (Lond.) 585, 669–679 (2007).

    CAS  Article  Google Scholar 

  41. 41

    Virmani, T., Han, W., Liu, X., Südhof, T.C. & Kavalali, E.T. Synaptotagmin 7 splice variants differentially regulate synaptic vesicle recycling. EMBO J. 22, 5347–5357 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Voglmaier, S.M. et al. Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51, 71–84 (2006).

    CAS  Article  Google Scholar 

  43. 43

    Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat. Neurosci. 8, 1319–1328 (2005).

    CAS  Article  Google Scholar 

  44. 44

    Iremonger, K.J. & Bains, J.S. Integration of asynchronously released quanta prolongs the postsynaptic spike window. J. Neurosci. 27, 6684–6691 (2007).

    CAS  Article  Google Scholar 

  45. 45

    Mutch, S.A. et al. Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J. Neurosci. 31, 1461–1470 (2011).

    CAS  Article  Google Scholar 

  46. 46

    Mozhayeva, M.G., Sara, Y., Liu, X. & Kavalali, E.T. Development of vesicle pools during maturation of hippocampal synapses. J. Neurosci. 22, 654–665 (2002).

    CAS  Article  Google Scholar 

  47. 47

    Bajohrs, M., Rickman, C., Binz, T. & Davletov, B. A molecular basis underlying differences in the toxicity of botulinum serotypes A and E. EMBO Rep. 5, 1090–1095 (2004).

    CAS  Article  Google Scholar 

  48. 48

    Hu, K., Carroll, J., Rickman, C. & Davletov, B. Action of complexin on SNARE complex. J. Biol. Chem. 277, 41652–41656 (2002).

    CAS  Article  Google Scholar 

  49. 49

    Ramirez, D.M., Andersson, S. & Russell, D.W. Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J. Comp. Neurol. 507, 1676–1693 (2008).

    CAS  Article  Google Scholar 

Download references


We thank J. Leitz for technical assistance and H. Kramer, L. Monteggia, E. Nelson and E. Nosyreva for advice and discussions. We also thank T.C. Südhof (Stanford University) for the gift of synaptobrevin2 knockout mice and M.C. Wilson (University of New Mexico) for the gift of SNAP-25 knockout mice. This work was supported by grants from the US National Institute of Mental Health to E.T.K. (MH066198). E.T.K. is an established investigator of the American Heart Association.

Author information




J.R., M.K. and P. Liu conducted the majority of experiments presented in the manuscript. F.D. and B.D. conducted the biochemical analysis presented in Figure 5 and Supplementary Figure 8 and contributed to corresponding sections of manuscript. Y.C.L. and D.M.O.R. conducted dual-color imaging experiments. M.A. provided essential assistance with mouse breeding and genotyping. P. Lemieux and K.T. conducted immunoelectron microscopy and immunohistochemistry experiments (Fig. 1 and Supplementary Figs. 1 and 2) and contributed to corresponding sections of manuscript. J.R., M.K. and E.T.K. conceptualized and planned the study. E.T.K. wrote the paper.

Corresponding author

Correspondence to Ege T Kavalali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 1120 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raingo, J., Khvotchev, M., Liu, P. et al. VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat Neurosci 15, 738–745 (2012).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing