Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke

Abstract

Phagocytic cell NADPH oxidase (NOX) generates reactive oxygen species (ROS) as part of innate immunity. Unfortunately, ischemia can also induce this pathway and inflict damage on native cells. The voltage-gated proton channel Hv1 enables NOX function by compensating cellular loss of electrons with protons. Accordingly, we investigated whether NOX-mediated brain damage in stroke can be inhibited by suppression of Hv1. We found that mouse and human brain microglia, but not neurons or astrocytes, expressed large Hv1-mediated currents. Hv1 was required for NOX-dependent ROS generation in brain microglia in situ and in vivo. Mice lacking Hv1 were protected from NOX-mediated neuronal death and brain damage 24 h after stroke. These results indicate that Hv1-dependent ROS production is responsible for a substantial fraction of brain damage at early time points after ischemic stroke and provide a rationale for Hv1 as a therapeutic target for the treatment of ischemic stroke.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Voltage-gated proton currents in hippocampal microglia in mouse brain slices.
Figure 2: Hv1 mediates the voltage-gated proton current in mouse brain microglia, but not in neurons or astrocytes.
Figure 3: Hv1 regulates microglial acid extrusion and controls NOX–dependent ROS production in situ.
Figure 4: Hv1−/− mice are protected in ischemic stroke.
Figure 5: Hv1-deficient mice are relatively protected against ischemic neuronal death.
Figure 6: Microglial Hv1 is critical for ROS production after stroke.
Figure 7: Microglial, but not leukocyte, Hv1 is responsible for brain damage after ischemic stroke.

Similar content being viewed by others

References

  1. Nathan, C. & Ding, A. SnapShot: reactive oxygen intermediates (ROI). Cell 140, 951 (2010).

    Article  Google Scholar 

  2. Steinhubl, S.R. Why have antioxidants failed in clinical trials? Am. J. Cardiol. 101, 14D–19D (2008).

    Article  CAS  Google Scholar 

  3. Bedard, K. & Krause, K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    Article  CAS  Google Scholar 

  4. Dringen, R. Oxidative and antioxidative potential of brain microglial cells. Antioxid. Redox Signal. 7, 1223–1233 (2005).

    Article  CAS  Google Scholar 

  5. Walder, C.E. et al. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28, 2252–2258 (1997).

    Article  CAS  Google Scholar 

  6. Kleinschnitz, C. et al. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol. 8, e1000479 (2010).

    Article  Google Scholar 

  7. Decoursey, T.E. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475–579 (2003).

    Article  CAS  Google Scholar 

  8. Decoursey, T.E., Morgan, D. & Cherny, V.V. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422, 531–534 (2003).

    Article  CAS  Google Scholar 

  9. Ramsey, I.S., Moran, M.M., Chong, J.A. & Clapham, D.E. A voltage-gated proton-selective channel lacking the pore domain. Nature 440, 1213–1216 (2006).

    Article  CAS  Google Scholar 

  10. Sasaki, M., Takagi, M. & Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 312, 589–592 (2006).

    Article  CAS  Google Scholar 

  11. Okochi, Y., Sasaki, M., Iwasaki, H. & Okamura, Y. Voltage-gated proton channel is expressed on phagosomes. Biochem. Biophys. Res. Commun. 382, 274–279 (2009).

    Article  CAS  Google Scholar 

  12. Ramsey, I.S., Ruchti, E., Kaczmarek, J.S. & Clapham, D.E. Hv1 proton channels are required for high-level NADPH oxidase–dependent superoxide production during the phagocyte respiratory burst. Proc. Natl. Acad. Sci. USA 106, 7642–7647 (2009).

    Article  CAS  Google Scholar 

  13. Capasso, M. et al. HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat. Immunol. 11, 265–272 (2010).

    Article  CAS  Google Scholar 

  14. Musset, B. et al. A pH-stabilizing role of voltage-gated proton channels in IgE-mediated activation of human basophils. Proc. Natl. Acad. Sci. USA 105, 11020–11025 (2008).

    Article  CAS  Google Scholar 

  15. Iovannisci, D., Illek, B. & Fischer, H. Function of the HVCN1 proton channel in airway epithelia and a naturally occurring mutation, M91T. J. Gen. Physiol. 136, 35–46 (2010).

    Article  CAS  Google Scholar 

  16. Lishko, P.V., Botchkina, I.L., Fedorenko, A. & Kirichok, Y. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140, 327–337 (2010).

    Article  CAS  Google Scholar 

  17. Thomas, R.C. & Meech, R.W. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature 299, 826–828 (1982).

    Article  CAS  Google Scholar 

  18. De Simoni, A., Allen, N.J. & Attwell, D. Charge compensation for NADPH oxidase activity in microglia in rat brain slices does not involve a proton current. Eur. J. Neurosci. 28, 1146–1156 (2008).

    Article  Google Scholar 

  19. Schilling, T. & Eder, C. Ion channel expression in resting and activated microglia of hippocampal slices from juvenile mice. Brain Res. 1186, 21–28 (2007).

    Article  CAS  Google Scholar 

  20. DeCoursey, T.E. Voltage-gated proton channels: what's next? J. Physiol. (Lond.) 586, 5305–5324 (2008).

    Article  CAS  Google Scholar 

  21. Visentin, S., Agresti, C., Patrizio, M. & Levi, G. Ion channels in rat microglia and their different sensitivity to lipopolysaccharide and interferon-gamma. J. Neurosci. Res. 42, 439–451 (1995).

    Article  CAS  Google Scholar 

  22. Cheng, Y.M., Kelly, T. & Church, J. Potential contribution of a voltage-activated proton conductance to acid extrusion from rat hippocampal neurons. Neuroscience 151, 1084–1098 (2008).

    Article  CAS  Google Scholar 

  23. Boron, W.F. & De Weer, P. Intracellular pH transients in squid giant axons caused by CO2, NH3 and metabolic inhibitors. J. Gen. Physiol. 67, 91–112 (1976).

    Article  CAS  Google Scholar 

  24. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  Google Scholar 

  25. Wu, L.J., Vadakkan, K.I. & Zhuo, M. ATP-induced chemotaxis of microglial processes requires P2Y receptor–activated initiation of outward potassium currents. Glia 55, 810–821 (2007).

    Article  Google Scholar 

  26. Block, M.L., Zecca, L. & Hong, J.S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69 (2007).

    Article  CAS  Google Scholar 

  27. Gambhir, S.S. et al. A tabulated summary of the FDG PET literature. J. Nucl. Med. 42, 1S–93S (2001).

    CAS  PubMed  Google Scholar 

  28. Lyons, S.A. et al. Distinct physiologic properties of microglia and blood-borne cells in rat brain slices after permanent middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 20, 1537–1549 (2000).

    Article  CAS  Google Scholar 

  29. Kraft, R. et al. Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am. J. Physiol. Cell Physiol. 286, C129–C137 (2004).

    Article  CAS  Google Scholar 

  30. Whittingham, T.S., Lust, W.D. & Passonneau, J.V. An in vitro model of ischemia: metabolic and electrical alterations in the hippocampal slice. J. Neurosci. 4, 793–802 (1984).

    Article  CAS  Google Scholar 

  31. Brennan, A.M. et al. NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat. Neurosci. 12, 857–863 (2009).

    Article  CAS  Google Scholar 

  32. Chan, P.H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab. 21, 2–14 (2001).

    Article  CAS  Google Scholar 

  33. Lai, A.Y. & Todd, K.G. Microglia in cerebral ischemia: molecular actions and interactions. Can. J. Physiol. Pharmacol. 84, 49–59 (2006).

    Article  CAS  Google Scholar 

  34. Yenari, M.A., Kauppinen, T.M. & Swanson, R.A. Microglial activation in stroke: therapeutic targets. Neurotherapeutics 7, 378–391 (2010).

    Article  CAS  Google Scholar 

  35. Liu, R. et al. Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc. Natl. Acad. Sci. USA 100, 8526–8531 (2003).

    Article  CAS  Google Scholar 

  36. Jin, R., Yang, G. & Li, G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J. Leukoc. Biol. 87, 779–789 (2010).

    Article  CAS  Google Scholar 

  37. Lalancette-Hébert, M., Gowing, G., Simard, A., Weng, Y.C. & Kriz, J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 27, 2596–2605 (2007).

    Article  Google Scholar 

  38. Sorce, S. & Krause, K.H. NOX enzymes in the central nervous system: from signaling to disease. Antioxid. Redox Signal. 11, 2481–2504 (2009).

    Article  CAS  Google Scholar 

  39. Schilling, M. et al. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp. Neurol. 183, 25–33 (2003).

    Article  Google Scholar 

  40. Gelderblom, M. et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40, 1849–1857 (2009).

    Article  Google Scholar 

  41. Ransohoff, R.M. Microgliosis: the questions shape the answers. Nat. Neurosci. 10, 1507–1509 (2007).

    Article  CAS  Google Scholar 

  42. Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).

    Article  CAS  Google Scholar 

  43. Moskowitz, M.A., Lo, E.H. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 67, 181–198 (2010).

    Article  CAS  Google Scholar 

  44. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  Google Scholar 

  45. Wu, L.J. & Zhuo, M. Resting microglial motility is independent of synaptic plasticity in mammalian brain. J. Neurophysiol. 99, 2026–2032 (2008).

    Article  Google Scholar 

  46. Longa, E.Z., Weinstein, P.R., Carlson, S. & Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84–91 (1989).

    Article  CAS  Google Scholar 

  47. Fisher, M. et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40, 2244–2250 (2009).

    Article  Google Scholar 

  48. Hara, H., Huang, P.L., Panahian, N., Fishman, M.C. & Moskowitz, M.A. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J. Cereb. Blood Flow Metab. 16, 605–611 (1996).

    Article  CAS  Google Scholar 

  49. Zhao, H. et al. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic. Biol. Med. 34, 1359–1368 (2003).

    Article  CAS  Google Scholar 

  50. Boyarsky, G., Ganz, M.B., Sterzel, R.B. & Boron, W.F. pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3. Am. J. Physiol. 255, C844–C856 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Silberstein, W. Yang and M. Kurtev for technical assistance, S. Doctrow (Boston University) for kindly providing us with EUK-207, Y. Kirichok (University of California, San Francisco) for Hv1 antibody, and D. Chaudhuri for critical reading of the manuscript. This work was supported by the US National Institutes of Health (R01 MH090293 to D.E.C. and R01 EY019029 to E.P.F.). L.-J.W. is supported by a Lefler postdoctoral fellowship from Harvard Medical School and a Scientist Development Grant from the American Heart Association (11SDG7340011).

Author information

Authors and Affiliations

Authors

Contributions

L.-J.W. performed experiments, including electrophysiology, imaging, immunostaining, cell culture, quantitative RT-PCR, western blot and the mouse stroke models. G.W. performed the mouse stroke models, and western blot, immunostaining, quantitative RT-PCR and cell culture experiments. M.R.A.S. conducted MRI experiments. A.B. conducted PET and computed tomography imaging experiments. Y.J conducted bone marrow transplantation experiments. L.-J.W., G.W., Y.J., F.H.F. and D.E.C. conducted the data analyses. L.-J.W. and D.E.C. wrote the manuscript. L.-J.W., H.R.L., E.P.F. and D.E.C. supervised the project.

Corresponding author

Correspondence to David E Clapham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 (PDF 1238 kb)

Supplementary Movie 1

Time-lapse imaging of increased ROS production in wt and Hv1−/− microglia in brain slices after PMA perfusion (10s/frame) (AVI 4333 kb)

Supplementary Movie 2

Time-lapse imaging of ATP-induced chemotaxis in wt and Hv1−/− microglia in brain slices (1 min/frame) (AVI 3686 kb)

Supplementary Movie 3

MRI images of coronal section of whole brain 24 hours after pMCAO (AVI 1156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, LJ., Wu, G., Sharif, M. et al. The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke. Nat Neurosci 15, 565–573 (2012). https://doi.org/10.1038/nn.3059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3059

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing