Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitochondrial CB1 receptors regulate neuronal energy metabolism

This article has been updated


The mammalian brain is one of the organs with the highest energy demands, and mitochondria are key determinants of its functions. Here we show that the type-1 cannabinoid receptor (CB1) is present at the membranes of mouse neuronal mitochondria (mtCB1), where it directly controls cellular respiration and energy production. Through activation of mtCB1 receptors, exogenous cannabinoids and in situ endocannabinoids decreased cyclic AMP concentration, protein kinase A activity, complex I enzymatic activity and respiration in neuronal mitochondria. In addition, intracellular CB1 receptors and mitochondrial mechanisms contributed to endocannabinoid-dependent depolarization-induced suppression of inhibition in the hippocampus. Thus, mtCB1 receptors directly modulate neuronal energy metabolism, revealing a new mechanism of action of G protein–coupled receptor signaling in the brain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: CB1 receptors in neuronal mitochondria.
Figure 2: Mt-CB1 is present in both GABAergic and glutamatergic CA1 hippocampal neurons.
Figure 3: Direct regulation of mitochondrial activity by mtCB1 receptors in the brain.
Figure 4: MtCB1 receptors are activated by THC, and mitochondria contain biologically active endocannabinoids.
Figure 5: Hemopressin and HU-biot do not penetrate cells and cannot alter cellular respiration in intact cells.
Figure 6: Intracellular CB1 receptors contribute to depolarization-induced DSI.
Figure 7: Inhibition of mitochondrial activity potentiates DSI.

Change history

  • 27 March 2012

    In the version of this article initially published online, the description of the procedure given in the Online Methods for synthesis of fluorescent hemopressin, taken from a different protocol not used in this work, was incorrect. The entire paragraph has been replaced. The error has been corrected in the PDF and HTML versions of this article.


  1. 1

    MacAskill, A.F. & Kittler, J.T. Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20, 102–112 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Attwell, D. & Laughlin, S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Nicholls, D.G. & Ferguson, S.J. Bioenergetics 3 (Academic Press, London, 2002).

  4. 4

    Mattson, M.P., Gleichmann, M. & Cheng, A. Mitochondria in neuroplasticity and neurological disorders. Neuron 60, 748–766 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Laughlin, S.B., de Ruyter van Steveninck, R.R. & Anderson, J.C. The metabolic cost of neural information. Nat. Neurosci. 1, 36–41 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Belous, A.E. et al. Mitochondrial calcium transport is regulated by P2Y1- and P2Y2-like mitochondrial receptors. J. Cell Biochem. 99, 1165–1174 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Lyssand, J.S. & Bajjalieh, S.M. The heterotrimeric G protein subunit G alpha i is present on mitochondria. FEBS Lett. 581, 5765–5768 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Andreeva, A.V., Kutuzov, M.A. & Voyno-Yasenetskaya, T.A. G alpha12 is targeted to the mitochondria and affects mitochondrial morphology and motility. FASEB J. 22, 2821–2831 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Zippin, J.H. et al. Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J. 17, 82–84 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Acin-Perez, R. et al. A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J. Biol. Chem. 286, 30423–30432 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Acin-Perez, R. et al. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab. 9, 265–276 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Ryu, H., Lee, J., Impey, S., Ratan, R.R. & Ferrante, R.J. Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc. Natl. Acad. Sci. USA 102, 13915–13920 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Chen, R., Fearnley, I.M., Peak-Chew, S.Y. & Walker, J.E. The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. 279, 26036–26045 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Helling, S. et al. Phosphorylation and kinetics of mammalian cytochrome c oxidase. Mol. Cell Proteomics 7, 1714–1724 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Piomelli, D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 4, 873–884 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. & Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Marsicano, G. & Lutz, B. Neuromodulatory functions of the endocannabinoid system. J. Endocrinol. Invest. 29, 27–46 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Bartova, A. & Birmingham, M.K. Effect of delta9-tetrahydrocannabinol on mitochondrial NADH-oxidase activity. J. Biol. Chem. 251, 5002–5006 (1976).

    CAS  PubMed  Google Scholar 

  19. 19

    Matsuda, L.A., Lolait, S.J., Brownstein, M.J., Young, A.C. & Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    CAS  Article  Google Scholar 

  20. 20

    Martin, B.R. Cellular effects of cannabinoids. Pharmacol. Rev. 38, 45–74 (1986).

    CAS  PubMed  Google Scholar 

  21. 21

    Tedesco, L. et al. Cannabinoid receptor stimulation impairs mitochondrial biogenesis in mouse white adipose tissue, muscle, and liver: the role of eNOS, p38 MAPK, and AMPK pathways. Diabetes 59, 2826–2836 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Aquila, S. et al. Human sperm anatomy: ultrastructural localization of the cannabinoid1 receptor and a potential role of anandamide in sperm survival and acrosome reaction. Anat. Rec. (Hoboken) 293, 298–309 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Gulyas, A.I. et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci. 20, 441–458 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Marsicano, G. & Kuner, R. Anatomical distribution of receptors, ligands and enzymes in the brain and the spinal cord: circuitries and neurochemistry. in Cannabinoids and the Brain (ed. Kofalvi, A.) 161–202 (Springer, New York, 2008).

  25. 25

    Rozenfeld, R. & Devi, L.A. Regulation of CB1 cannabinoid receptor trafficking by the adaptor protein AP-3. FASEB J. 22, 2311–2322 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Bellocchio, L. et al. Bimodal control of stimulated food intake by the endocannabinoid system. Nat. Neurosci. 13, 281–283 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Monory, K. et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51, 455–466 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Pertwee, R.G. Pharmacology of cannabinoid receptor ligands. Curr. Med. Chem. 6, 635–664 (1999).

    CAS  PubMed  Google Scholar 

  30. 30

    Papa, S. Does cAMP play a part in the regulation of the mitochondrial electron transport chain in mammalian cells? IUBMB Life 58, 173–175 (2006).

    CAS  Article  Google Scholar 

  31. 31

    Guggenhuber, S., Monory, K., Lutz, B. & Klugmann, M. AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS ONE 5, e15707 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Long, J.Z. et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc. Natl. Acad. Sci. USA 106, 20270–20275 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Heimann, A.S. et al. Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc. Natl. Acad. Sci. USA 104, 20588–20593 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Gomes, I. et al. Hemoglobin-derived peptides as novel type of bioactive signaling molecules. AAPS J. 12, 658–669 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Claros, M.G. & Vincens, P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241, 779–786 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Kilbride, S.M., Telford, J.E., Tipton, K.F. & Davey, G.P. Partial inhibition of complex I activity increases Ca-independent glutamate release rates from depolarized synaptosomes. J. Neurochem. 106, 826–834 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Costa, C. et al. Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition. J. Neurosci. 28, 8040–8052 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Marsicano, G. et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88 (2003).

    CAS  Article  Google Scholar 

  39. 39

    Monory, K. et al. Genetic dissection of behavioural and autonomic effects of Delta(9)-tetrahydrocannabinol in mice. PLoS Biol. 5, e269 (2007).

    Article  Google Scholar 

  40. 40

    Mechoulam, R., Lander, N., University, A. & Zahalka, J. Synthesis of the individual, pharmacologically distinct, enantiomers of a tetrahydrocannabinol derivative. Tetrahedron Asymmetry 1, 315–318 (1990).

    CAS  Article  Google Scholar 

  41. 41

    Martín-Couce, L., Martín-Fontecha, M., Capolicchio, S., López-Rodríguez, M.L. & Ortega-Gutiérrez, S. Development of endocannabinoid-based chemical probes for the study of cannabinoid receptors. J. Med. Chem. 54, 5265–5269 (2011).

    Article  Google Scholar 

  42. 42

    Puente, N. et al. Polymodal activation of the endocannabinoid system in the extended amygdala. Nat. Neurosci. 14, 1542–1547 (2011).

    CAS  Article  Google Scholar 

  43. 43

    Benard, G. et al. Physiological diversity of mitochondrial oxidative phosphorylation. Am. J. Physiol. Cell Physiol. 291, C1172–C1182 (2006).

    CAS  Article  Google Scholar 

  44. 44

    Lourenço, J., Matias, I., Marsicano, G. & Mulle, C. Pharmacological activation of kainate receptors drives endocannabinoid mobilization. J. Neurosci. 31, 3243–3248 (2011).

    Article  Google Scholar 

  45. 45

    Klugmann, M. et al. AAV-mediated hippocampal expression of short and long Homer 1 proteins differentially affect cognition and seizure activity in adult rats. Mol. Cell Neurosci. 28, 347–360 (2005).

    CAS  Article  Google Scholar 

  46. 46

    Lourenço, J. et al. Synaptic activation of kainate receptors gates presynaptic CB(1) signaling at GABAergic synapses. Nat. Neurosci. 13, 197–204 (2010).

    Article  Google Scholar 

Download references


We thank D. Gonzales, N. Aubailly and all the personnel of the Animal Facility of the NeuroCentre Magendie for mouse care and genotyping; all the members of G.M.'s laboratory for discussions; and A. Bacci, D. Cota, M. Guzman, U. Pagotto, P.V. Piazza and C. Wotjak for critically reading the manuscript. Supported by AVENIR/INSERM (G.M.), INSERM–Agence Nationale de la Recherche (Retour Post-Doc ANR-09RDPOC-006-01 (G.B.), European Union 7th Framework Program (REPROBESITY, HEALTH-F2-2008-223713, G.M. and B.L.), European Research Council (ENDOFOOD, ERC-2010-StG-260515, G.M.), Fondation pour la Recherche Medicale (G.M. and M.M.-L.), Region Aquitaine (G.M.), Fyssen Foundation (E.S.-G.), University of Bordeaux (J.L.), Red de Trastornos Adictivos, Instituto de Salud Carlos III (RD07/0001/2001, P.G.), Basque Country Government (GIC07/70-IT-432-07, P.G.), University of the Basque Country UPV/EHU (UFI11/41, P.G.), Comunidad de Madrid (S2010/BMD-2353, M.L.L.-R.), MICINN (SAF2009-07065, P.G.; SAF2010-22198-C02-01, M.L.L.-R.), Ramon y Cajal program (S.O.-G.), Deutsche Forschungsgemeinschaft (FOR926, B.L.) and CONACyT (E.S.-G.).

Author information




N.P., J.L. and L.B. equally contributed to experiments. P.G. and R.R. equally supervised different parts of this work. G.B., P.G., R.R. and G.M. designed the study. G.B. performed the biochemical experiments. F.M., J.L. and C.M. performed the electrophysiological studies. N.P. performed the anatomical studies. L.B. and E.S.-G. performed in vivo studies and stereotactic injections of viruses. A.D., M.M.-L., E.H.-C. and A.C. participated in biochemical experiments. I.M. measured endocannabinoids and endocannabinoid-degrading enzymatic activities. S.O.-G., M.M.-F. and M.L.L.-R. synthesized and biochemically characterized HU-biot and measured intracellular hemopressin and AM251. J.G. generated fluorescent hemopressin and performed in vitro studies on cell penetration. M.K., S.G. and B.L. provided the viruses for local re-expression of CB1 receptors. F.C. supervised part of the work. P.G. supervised the anatomical studies. R.R. supervised biochemical experiments. G.M. conceived and supervised the whole study and wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Giovanni Marsicano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 13643 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bénard, G., Massa, F., Puente, N. et al. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat Neurosci 15, 558–564 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing