This article has been updated

Abstract

The mammalian brain is one of the organs with the highest energy demands, and mitochondria are key determinants of its functions. Here we show that the type-1 cannabinoid receptor (CB1) is present at the membranes of mouse neuronal mitochondria (mtCB1), where it directly controls cellular respiration and energy production. Through activation of mtCB1 receptors, exogenous cannabinoids and in situ endocannabinoids decreased cyclic AMP concentration, protein kinase A activity, complex I enzymatic activity and respiration in neuronal mitochondria. In addition, intracellular CB1 receptors and mitochondrial mechanisms contributed to endocannabinoid-dependent depolarization-induced suppression of inhibition in the hippocampus. Thus, mtCB1 receptors directly modulate neuronal energy metabolism, revealing a new mechanism of action of G protein–coupled receptor signaling in the brain.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 27 March 2012

    In the version of this article initially published online, the description of the procedure given in the Online Methods for synthesis of fluorescent hemopressin, taken from a different protocol not used in this work, was incorrect. The entire paragraph has been replaced. The error has been corrected in the PDF and HTML versions of this article.

References

  1. 1.

    & Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20, 102–112 (2010).

  2. 2.

    & An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

  3. 3.

    & Bioenergetics 3 (Academic Press, London, 2002).

  4. 4.

    , & Mitochondria in neuroplasticity and neurological disorders. Neuron 60, 748–766 (2008).

  5. 5.

    , & The metabolic cost of neural information. Nat. Neurosci. 1, 36–41 (1998).

  6. 6.

    et al. Mitochondrial calcium transport is regulated by P2Y1- and P2Y2-like mitochondrial receptors. J. Cell Biochem. 99, 1165–1174 (2006).

  7. 7.

    & The heterotrimeric G protein subunit G alpha i is present on mitochondria. FEBS Lett. 581, 5765–5768 (2007).

  8. 8.

    , & G alpha12 is targeted to the mitochondria and affects mitochondrial morphology and motility. FASEB J. 22, 2821–2831 (2008).

  9. 9.

    et al. Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains. FASEB J. 17, 82–84 (2003).

  10. 10.

    et al. A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J. Biol. Chem. 286, 30423–30432 (2011).

  11. 11.

    et al. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab. 9, 265–276 (2009).

  12. 12.

    , , , & Antioxidants modulate mitochondrial PKA and increase CREB binding to D-loop DNA of the mitochondrial genome in neurons. Proc. Natl. Acad. Sci. USA 102, 13915–13920 (2005).

  13. 13.

    , , & The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. 279, 26036–26045 (2004).

  14. 14.

    et al. Phosphorylation and kinetics of mammalian cytochrome c oxidase. Mol. Cell Proteomics 7, 1714–1724 (2008).

  15. 15.

    The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 4, 873–884 (2003).

  16. 16.

    , , , & Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380 (2009).

  17. 17.

    & Neuromodulatory functions of the endocannabinoid system. J. Endocrinol. Invest. 29, 27–46 (2006).

  18. 18.

    & Effect of delta9-tetrahydrocannabinol on mitochondrial NADH-oxidase activity. J. Biol. Chem. 251, 5002–5006 (1976).

  19. 19.

    , , , & Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

  20. 20.

    Cellular effects of cannabinoids. Pharmacol. Rev. 38, 45–74 (1986).

  21. 21.

    et al. Cannabinoid receptor stimulation impairs mitochondrial biogenesis in mouse white adipose tissue, muscle, and liver: the role of eNOS, p38 MAPK, and AMPK pathways. Diabetes 59, 2826–2836 (2010).

  22. 22.

    et al. Human sperm anatomy: ultrastructural localization of the cannabinoid1 receptor and a potential role of anandamide in sperm survival and acrosome reaction. Anat. Rec. (Hoboken) 293, 298–309 (2010).

  23. 23.

    et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci. 20, 441–458 (2004).

  24. 24.

    & Anatomical distribution of receptors, ligands and enzymes in the brain and the spinal cord: circuitries and neurochemistry. in Cannabinoids and the Brain (ed. Kofalvi, A.) 161–202 (Springer, New York, 2008).

  25. 25.

    & Regulation of CB1 cannabinoid receptor trafficking by the adaptor protein AP-3. FASEB J. 22, 2311–2322 (2008).

  26. 26.

    et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

  27. 27.

    et al. Bimodal control of stimulated food intake by the endocannabinoid system. Nat. Neurosci. 13, 281–283 (2010).

  28. 28.

    et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51, 455–466 (2006).

  29. 29.

    Pharmacology of cannabinoid receptor ligands. Curr. Med. Chem. 6, 635–664 (1999).

  30. 30.

    Does cAMP play a part in the regulation of the mitochondrial electron transport chain in mammalian cells? IUBMB Life 58, 173–175 (2006).

  31. 31.

    , , & AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS ONE 5, e15707 (2010).

  32. 32.

    et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc. Natl. Acad. Sci. USA 106, 20270–20275 (2009).

  33. 33.

    et al. Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc. Natl. Acad. Sci. USA 104, 20588–20593 (2007).

  34. 34.

    et al. Hemoglobin-derived peptides as novel type of bioactive signaling molecules. AAPS J. 12, 658–669 (2010).

  35. 35.

    & Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241, 779–786 (1996).

  36. 36.

    , , & Partial inhibition of complex I activity increases Ca-independent glutamate release rates from depolarized synaptosomes. J. Neurochem. 106, 826–834 (2008).

  37. 37.

    et al. Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition. J. Neurosci. 28, 8040–8052 (2008).

  38. 38.

    et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88 (2003).

  39. 39.

    et al. Genetic dissection of behavioural and autonomic effects of Delta(9)-tetrahydrocannabinol in mice. PLoS Biol. 5, e269 (2007).

  40. 40.

    , , & Synthesis of the individual, pharmacologically distinct, enantiomers of a tetrahydrocannabinol derivative. Tetrahedron Asymmetry 1, 315–318 (1990).

  41. 41.

    , , , & Development of endocannabinoid-based chemical probes for the study of cannabinoid receptors. J. Med. Chem. 54, 5265–5269 (2011).

  42. 42.

    et al. Polymodal activation of the endocannabinoid system in the extended amygdala. Nat. Neurosci. 14, 1542–1547 (2011).

  43. 43.

    et al. Physiological diversity of mitochondrial oxidative phosphorylation. Am. J. Physiol. Cell Physiol. 291, C1172–C1182 (2006).

  44. 44.

    , , & Pharmacological activation of kainate receptors drives endocannabinoid mobilization. J. Neurosci. 31, 3243–3248 (2011).

  45. 45.

    et al. AAV-mediated hippocampal expression of short and long Homer 1 proteins differentially affect cognition and seizure activity in adult rats. Mol. Cell Neurosci. 28, 347–360 (2005).

  46. 46.

    et al. Synaptic activation of kainate receptors gates presynaptic CB(1) signaling at GABAergic synapses. Nat. Neurosci. 13, 197–204 (2010).

Download references

Acknowledgements

We thank D. Gonzales, N. Aubailly and all the personnel of the Animal Facility of the NeuroCentre Magendie for mouse care and genotyping; all the members of G.M.'s laboratory for discussions; and A. Bacci, D. Cota, M. Guzman, U. Pagotto, P.V. Piazza and C. Wotjak for critically reading the manuscript. Supported by AVENIR/INSERM (G.M.), INSERM–Agence Nationale de la Recherche (Retour Post-Doc ANR-09RDPOC-006-01 (G.B.), European Union 7th Framework Program (REPROBESITY, HEALTH-F2-2008-223713, G.M. and B.L.), European Research Council (ENDOFOOD, ERC-2010-StG-260515, G.M.), Fondation pour la Recherche Medicale (G.M. and M.M.-L.), Region Aquitaine (G.M.), Fyssen Foundation (E.S.-G.), University of Bordeaux (J.L.), Red de Trastornos Adictivos, Instituto de Salud Carlos III (RD07/0001/2001, P.G.), Basque Country Government (GIC07/70-IT-432-07, P.G.), University of the Basque Country UPV/EHU (UFI11/41, P.G.), Comunidad de Madrid (S2010/BMD-2353, M.L.L.-R.), MICINN (SAF2009-07065, P.G.; SAF2010-22198-C02-01, M.L.L.-R.), Ramon y Cajal program (S.O.-G.), Deutsche Forschungsgemeinschaft (FOR926, B.L.) and CONACyT (E.S.-G.).

Author information

Author notes

    • Joana Lourenço

    Present address: European Brain Research Institute, “Rita Levi-Montalcini” Foundation, Rome, Italy.

    • Giovanni Bénard
    •  & Federico Massa

    These authors contributed equally to this work.

Affiliations

  1. INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, Endocannabinoids and Neuroadaptation, U862, Bordeaux, France.

    • Giovanni Bénard
    • , Federico Massa
    • , Joana Lourenço
    • , Luigi Bellocchio
    • , Edgar Soria-Gómez
    • , Isabel Matias
    • , Anna Delamarre
    • , Mathilde Metna-Laurent
    • , Astrid Cannich
    • , Etienne Hebert-Chatelain
    • , Francis Chaouloff
    •  & Giovanni Marsicano
  2. Université de Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), EA 4576, Bordeaux, France.

    • Giovanni Bénard
    •  & Rodrigue Rossignol
  3. Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, Bordeaux, France.

    • Giovanni Bénard
    • , Federico Massa
    • , Joana Lourenço
    • , Luigi Bellocchio
    • , Edgar Soria-Gómez
    • , Isabel Matias
    • , Anna Delamarre
    • , Mathilde Metna-Laurent
    • , Astrid Cannich
    • , Etienne Hebert-Chatelain
    • , Christophe Mulle
    • , Francis Chaouloff
    • , Rodrigue Rossignol
    •  & Giovanni Marsicano
  4. Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain.

    • Nagore Puente
    •  & Pedro Grandes
  5. Laboratoire Physiologie Cellulaire de la Synapse, Centre National de la Recherche Scientifique UMR 5091, Bordeaux, France.

    • Joana Lourenço
    •  & Christophe Mulle
  6. Department of Organic Chemistry, Complutense University, Madrid, Spain.

    • Silvia Ortega-Gutiérrez
    • , Mar Martín-Fontecha
    •  & María Luz López-Rodríguez
  7. Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.

    • Matthias Klugmann
    • , Stephan Guggenhuber
    •  & Beat Lutz
  8. Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.

    • Matthias Klugmann
  9. Institute of Biochemistry and Molecular Medicine, Bern, Switzerland.

    • Jürg Gertsch

Authors

  1. Search for Giovanni Bénard in:

  2. Search for Federico Massa in:

  3. Search for Nagore Puente in:

  4. Search for Joana Lourenço in:

  5. Search for Luigi Bellocchio in:

  6. Search for Edgar Soria-Gómez in:

  7. Search for Isabel Matias in:

  8. Search for Anna Delamarre in:

  9. Search for Mathilde Metna-Laurent in:

  10. Search for Astrid Cannich in:

  11. Search for Etienne Hebert-Chatelain in:

  12. Search for Christophe Mulle in:

  13. Search for Silvia Ortega-Gutiérrez in:

  14. Search for Mar Martín-Fontecha in:

  15. Search for Matthias Klugmann in:

  16. Search for Stephan Guggenhuber in:

  17. Search for Beat Lutz in:

  18. Search for Jürg Gertsch in:

  19. Search for Francis Chaouloff in:

  20. Search for María Luz López-Rodríguez in:

  21. Search for Pedro Grandes in:

  22. Search for Rodrigue Rossignol in:

  23. Search for Giovanni Marsicano in:

Contributions

N.P., J.L. and L.B. equally contributed to experiments. P.G. and R.R. equally supervised different parts of this work. G.B., P.G., R.R. and G.M. designed the study. G.B. performed the biochemical experiments. F.M., J.L. and C.M. performed the electrophysiological studies. N.P. performed the anatomical studies. L.B. and E.S.-G. performed in vivo studies and stereotactic injections of viruses. A.D., M.M.-L., E.H.-C. and A.C. participated in biochemical experiments. I.M. measured endocannabinoids and endocannabinoid-degrading enzymatic activities. S.O.-G., M.M.-F. and M.L.L.-R. synthesized and biochemically characterized HU-biot and measured intracellular hemopressin and AM251. J.G. generated fluorescent hemopressin and performed in vitro studies on cell penetration. M.K., S.G. and B.L. provided the viruses for local re-expression of CB1 receptors. F.C. supervised part of the work. P.G. supervised the anatomical studies. R.R. supervised biochemical experiments. G.M. conceived and supervised the whole study and wrote the manuscript. All authors edited the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Giovanni Marsicano.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–7 and Supplementary Tables 1 and 2

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nn.3053

Further reading