Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The growth factor SVH-1 regulates axon regeneration in C. elegans via the JNK MAPK cascade

Abstract

The ability of neurons to undergo regenerative growth after injury is governed by cell-intrinsic and cell-extrinsic regeneration pathways. These pathways represent potential targets for therapies to enhance regeneration. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, the Jun N-terminal kinase (JNK) and p38 MAP kinase (MAPK) pathways are important for axon regeneration. We found that the C. elegans SVH-1 growth factor and its receptor, SVH-2 tyrosine kinase, regulate axon regeneration. Loss of SVH-1–SVH-2 signaling resulted in a substantial defect in the ability of neurons to regenerate, whereas its activation improved regeneration. Furthermore, SVH-1–SVH-2 signaling was initiated extrinsically by a pair of sensory neurons and functioned upstream of the JNK-MAPK pathway. Thus, SVH-1–SVH-2 signaling via activation of the MAPK pathway acts to coordinate neuron regeneration response after axon injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SVH-1 and SVH-2 are required for axon regeneration in C. elegans.
Figure 2: Expression patterns of the svh-1 and svh-2 genes.
Figure 3: Relationship between svh-1 and svh-2 in axon regeneration.
Figure 4: Effects of overexpression of svh-1 and svh-2 on axon regeneration.
Figure 5: SVH-2 functions in the JNK pathway.

Similar content being viewed by others

Accession codes

Accessions

DDBJ/GenBank/EMBL

References

  1. Yanik, M.F. et al. Neurosurgery: functional regeneration after laser axotomy. Nature 432, 822 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Hammarlund, M., Jorgensen, E.M. & Bastiani, M.J. Axons break in animals lacking beta-spectrin. J. Cell Biol. 176, 269–275 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O'Brien, G.S. & Sagasti, A. Fragile axons forge the path to gene discovery: a MAP kinase pathway regulates axon regeneration. Sci. Signal. 2, e30 (2009).

    Article  Google Scholar 

  4. Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E.M. & Bastiani, M. Axon regeneration requires a conserved MAP kinase pathway. Science 323, 802–806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yan, D., Wu, Z., Chisholm, A.D. & Jin, Y. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell 138, 1005–1018 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nix, P., Hisamoto, N., Matsumoto, K. & Bastiani, M. Axon regeneration requires co-activation of p38 and JNK MAPK pathways. Proc. Natl. Acad. Sci. USA 108, 10738–10743 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Camps, M., Nichols, A. & Arkinstall, S. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 14, 6–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Mizuno, T. et al. The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signalling pathway in stress response. EMBO J. 23, 2226–2234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Donate, L.E. et al. Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGFI/MSP). Protein Sci. 3, 2378–2394 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Trusolino, L., Bertotti, A. & Comoglio, P.M. MET signalling: principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol. 11, 834–848 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Gaudino, G. et al. RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J. 13, 3524–3532 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hart, A.C., Sims, S. & Kaplan, J.M. Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378, 82–85 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. McCarroll, S.A., Li, H. & Bargmann, C.I. Identification of transcriptional regulatory elements in chemosensory receptor genes by probabilistic segmentation. Curr. Biol. 15, 347–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Rodrigues, G.A. & Park, M. Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol. Cell Biol. 13, 6711–6722 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Santoro, M.M., Collesi, C., Grisendi, S., Gaudino, G. & Comoglio, P.M. Constitutive activation of the RON gene promotes invasive growth but not transformation. Mol. Cell Biol. 16, 7072–7083 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferracini, R. et al. Identification of the major autophosphorylation site of the Met/hepatocyte growth factor receptor tyrosine kinase. J. Biol. Chem. 266, 19558–19564 (1991).

    CAS  PubMed  Google Scholar 

  17. Knobel, K.M., Jorgensen, E.M. & Bastiani, M.J. Growth cones stall and collapse during axon outgrowth in Caenorhabditis elegans. Development 126, 4489–4498 (1999).

    CAS  PubMed  Google Scholar 

  18. Nakata, K. et al. Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell 120, 407–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Zhen, M., Huang, X., Bamber, B. & Jin, Y. Regulation of presynaptic terminal organization by C. elegans RPM-1, a putative guanine nucleotide exchanger with a RING-H2 finger domain. Neuron 26, 331–343 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Schaefer, A.M., Hadwiger, G.D. & Nonet, M.L. rpm-1, a conserved neuronal gene that regulates targeting and synaptogenesis in C. elegans. Neuron 26, 345–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Mizuno, T., Fujiki, K., Sasakawa, A., Hisamoto, N. & Matsumoto, K. Role of the Caenorhabditis elegans Shc adaptor protein in the c-Jun N-terminal kinase signalling pathway. Mol. Cell Biol. 28, 7041–7049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamath, R.K., Martinez-Campos, M., Zipperlen, P., Fraser, A.G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in C. elegans. Genome Biol. 2, 1–10 (2001).

    Google Scholar 

  24. Fang-Yen, C., Gabel, C.V., Samuel, A.D., Bargmann, C.I. & Avery, J. Laser microsurgery in Caenorhabditis elegans. Methods Cell Biol. 107, 177–206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sakamoto, R. et al. The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization. Mol. Biol. Cell 16, 483–496 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arimoto, M. et al. The Caenorhabditis elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein. J. Neurosci. 31, 2216–2224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Colicelli, J. et al. Expression of three mammalian cDNAs that interfere with RAS function in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88, 2913–2917 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fujiki, K., Mizuno, T., Hisamoto, N. & Matsumoto, K. The Caenorhabditis elegans Ste20 kinase and Rac-type small GTPase regulate the c-Jun N-terminal kinase signalling pathway mediating the stress response. Mol. Cell Biol. 30, 995–1003 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bork, P., Doerks, T., Springer, T.A. & Snel, B. Domains in plexins: links to integrins and transcription factors. Trends Biochem. Sci. 24, 261–263 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Kohara, S. Mitani, the Caenorhabditis Genetic Center and the C. elegans Knockout Consortium for materials. This work was supported by grants from Ministry of Education, Culture and Science of Japan, the Sumitomo Foundation (to K.M., T.M. and N.H.), the Nakajima Science Foundation (to T.M.), the National Science Foundation, the McKnight Endowment Fund for Neuroscience, the Christopher and Dana Reeve Foundation, and the Amerisure Charitable Foundation (to M.B. and P.N.). C.L. was supported by a Japan Society for the Promotion of Science Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.L., N.H., P.N., M.B. and K.M. designed the experiments and analyzed data. S.K. and T.M. performed the biochemical experiments. P.N. and M.B. carried out the time-lapse experiments. C.L. and N.H. performed all of the other experiments. The manuscript was written by K.M. and commented on by N.H., P.N. and M.B.

Corresponding authors

Correspondence to Naoki Hisamoto or Kunihiro Matsumoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1 and 2 (PDF 9979 kb)

Supplementary Video 1

Time-lapse image of severed axon of D-type motor neuron in wild-type animal. (MOV 11031 kb)

Supplementary Video 2

Time-lapse image of severed axon of D-type motor neuron in svh-2 mutant animal. (MOV 1558 kb)

Supplementary Video 3

Time-lapse image of severed axon of D-type motor neuron in svh-2 mutant animal. (MOV 2953 kb)

Supplementary Video 4

Time-lapse image of severed axon of D-type motor neuron in svh-1 mutant animal. (MOV 453 kb)

Supplementary Video 5

Time-lapse image of severed axon of D-type motor neuron in svh-1-overexpressing animal. (MOV 10209 kb)

Supplementary Video 6

Time-lapse image of severed axon of D-type motor neuron in svh-2-overexpressing animal. (MOV 8468 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Hisamoto, N., Nix, P. et al. The growth factor SVH-1 regulates axon regeneration in C. elegans via the JNK MAPK cascade. Nat Neurosci 15, 551–557 (2012). https://doi.org/10.1038/nn.3052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing