Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses

Abstract

Efforts to study the development and function of the human cerebral cortex in health and disease have been limited by the availability of model systems. Extrapolating from our understanding of rodent cortical development, we have developed a robust, multistep process for human cortical development from pluripotent stem cells: directed differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells to cortical stem and progenitor cells, followed by an extended period of cortical neurogenesis, neuronal terminal differentiation to acquire mature electrophysiological properties, and functional excitatory synaptic network formation. We found that induction of cortical neuroepithelial stem cells from human ES cells and human iPS cells was dependent on retinoid signaling. Furthermore, human ES cell and iPS cell differentiation to cerebral cortex recapitulated in vivo development to generate all classes of cortical projection neurons in a fixed temporal order. This system enables functional studies of human cerebral cortex development and the generation of individual-specific cortical networks ex vivo for disease modeling and therapeutic purposes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Directed differentiation of human ES and iPS cells to cortical stem and progenitor cells.
Figure 2: PSC-derived cortical stem/progenitor cells form a polarized neuroepithelium in vitro analogous to the cortical ventricular zone.
Figure 3: Cortical rosettes differentiated from PSCs generate basal progenitor and outer radial glial cells.
Figure 4: PSC-derived cortical stem cells produce cortical glutamatergic projection neurons before astrocytes.
Figure 5: Production of human cortical excitatory neurons from PSCs in vitro recapitulates in vivo development.
Figure 6: PSC-derived cortical neurons differentiate to acquire mature electrophysiological properties.
Figure 7: Formation of functional excitatory synapses among PSC-derived cortical projection neurons.

References

  1. 1

    Mountcastle, V.B. The Cerebral Cortex (Harvard University Press, Cambridge, Massachusetts, 1998).

  2. 2

    Finlay, B.L. & Darlington, R.B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995).

    CAS  Article  Google Scholar 

  3. 3

    Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Hill, R.S. & Walsh, C.A. Molecular insights into human brain evolution. Nature 437, 64–67 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Wonders, C.P. & Anderson, S.A. The origin and specification of cortical interneurons. Nat. Rev. Neurosci. 7, 687–696 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Caviness, V.S. Jr., Takahashi, T. & Nowakowski, R.S. Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci. 18, 379–383 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Douglas, R.J. & Martin, K.A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Fame, R.M., MacDonald, J.L. & Macklis, J.D. Development, specification, and diversity of callosal projection neurons. Trends Neurosci. 34, 41–50 (2011).

    CAS  Article  Google Scholar 

  9. 9

    López-Bendito, G. & Molnar, Z. Thalamocortical development: how are we going to get there? Nat. Rev. Neurosci. 4, 276–289 (2003).

    Article  Google Scholar 

  10. 10

    Bibel, M. et al. Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat. Neurosci. 7, 1003–1009 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ES cells and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Au, E. & Fishell, G. Cortex shatters the glass ceiling. Cell Stem Cell 3, 472–474 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Hansen, D.V., Rubenstein, J.L. & Kriegstein, A.R. Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 70, 645–660 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Hansen, D.V., Lui, J.H., Parker, P.R. & Kriegstein, A.R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Wang, X., Tsai, J.W., Lamonica, B. & Kriegstein, A.R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat. Neurosci. 14, 555–561 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Fietz, S.A. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 13, 690–699 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Ying, Q.L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Hu, B.Y. & Zhang, S.C. Directed differentiation of neural-stem cells and subtype-specific neurons from human ES cells. Methods Mol. Biol. 636, 123–137 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Elkabetz, Y. et al. Human ES cell–derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 22, 152–165 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Zhang, S.C., Wernig, M., Duncan, I.D., Brustle, O. & Thomson, J.A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–1133 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  Google Scholar 

  24. 24

    Fietz, S.A. & Huttner, W.B. Cortical progenitor expansion, self-renewal and neurogenesis: a polarized perspective. Curr. Opin. Neurobiol. 21, 23–35 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Takahashi, T., Nowakowski, R.S. & Caviness, V.S. Jr. The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J. Neurosci. 16, 6183–6196 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Cahoy, J.D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Polleux, F. & Ghosh, A. The slice overlay assay: a versatile tool to study the influence of extracellular signals on neuronal development. Sci. STKE 136, pl9 (2002).

    Google Scholar 

  28. 28

    Molyneaux, B.J., Arlotta, P., Menezes, J.R. & Macklis, J.D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Bedogni, F. et al. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc. Natl. Acad. Sci. USA 107, 13129–13134 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Bulfone, A. et al. T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15, 63–78 (1995).

    CAS  Article  Google Scholar 

  31. 31

    Arlotta, P. et al. Neuronal subtype–specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Nieto, M. et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II–IV of the cerebral cortex. J. Comp. Neurol. 479, 168–180 (2004).

    CAS  Article  Google Scholar 

  33. 33

    Alcamo, E.A. et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57, 364–377 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Britanova, O. et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57, 378–392 (2008).

    CAS  Article  Google Scholar 

  35. 35

    McCormick, D.A. & Prince, D.A. Postnatal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. J. Physiol. (Lond.) 393, 743–762 (1987).

    CAS  Article  Google Scholar 

  36. 36

    Connors, B.W., Gutnick, M.J. & Prince, D.A. Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol. 48, 1302–1320 (1982).

    CAS  Article  Google Scholar 

  37. 37

    Maden, M., Gale, E., Kostetskii, I. & Zile, M. Vitamin A–deficient quail embryos have half a hindbrain and other neural defects. Curr. Biol. 6, 417–426 (1996).

    CAS  Article  Google Scholar 

  38. 38

    Siegenthaler, J.A. et al. Retinoic acid from the meninges regulates cortical neuron generation. Cell 139, 597–609 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Vallier, L. et al. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signaling pathways. PLoS ONE 4, e6082 (2009).

    Article  Google Scholar 

  40. 40

    Livesey, F.J. & Cepko, C.L. Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2, 109–118 (2001).

    CAS  Article  Google Scholar 

  41. 41

    Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751 (2006).

    CAS  Article  Google Scholar 

  42. 42

    Caviness, V.S. Jr. et al. Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process. Cereb. Cortex 13, 592–598 (2003).

    Article  Google Scholar 

  43. 43

    Groc, L., Gustafsson, B. & Hanse, E. AMPA signaling in nascent glutamatergic synapses: there and not there! Trends Neurosci. 29, 132–139 (2006).

    CAS  Article  Google Scholar 

  44. 44

    Bystron, I., Blakemore, C. & Rakic, P. Development of the human cerebral cortex: Boulder Committee revisited. Nat. Rev. Neurosci. 9, 110–122 (2008).

    CAS  Article  Google Scholar 

  45. 45

    Rashid, S.T. et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest. 120, 3127–3136 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Vallier, L. et al. Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem Cells 27, 2655–2666 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Vallier (Cambridge) and Y. Takashima for kindly providing human iPS cell lines and J. Nichols (Cambridge Centre for Stem Cell Research, Cambridge) for providing the Edi2 human ES cell line. We also thank the members of the Livesey laboratory for their contributions, comments and input to this research. Y.S. was supported by a Biotechnology and Biological Sciences Research Council Dorothy Hodgkin Studentship. P.K. was supported by the University of Cambridge/Wellcome Trust PhD Programme in Developmental Biology. This research benefits from core support to the Gurdon Institute from the Wellcome Trust and Cancer Research UK and grants to F.J.L. from the Wellcome Trust and Alzheimer's Research UK.

Author information

Affiliations

Authors

Contributions

Y.S., P.K., H.P.C.R. and F.J.L. designed the study. Y.S., P.K. and J.S. carried out the experiments. Y.S., P.K., H.P.C.R. and F.J.L. analyzed the data. Y.S., P.K., H.P.C.R. and F.J.L. wrote the manuscript.

Corresponding author

Correspondence to Frederick J Livesey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 0 kb)

Supplementary Movie

Interkinetic nuclear migration, apical and basal mitoses in cortical rosettes. Time-lapse movie of the hESC-derived cortical rosette shown in Figure 2. In the initial frames the blue arrow indicates the apical progenitor and the yellow arrowhead indicates the basal progenitor shown in Figure 2. Frames were collected at 15 minute intervals. (MOV 1432 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shi, Y., Kirwan, P., Smith, J. et al. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15, 477–486 (2012). https://doi.org/10.1038/nn.3041

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing