Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coactivation of thalamic and cortical pathways induces input timing–dependent plasticity in amygdala

Abstract

Long-term synaptic enhancements in cortical and thalamic auditory inputs to the lateral nucleus of the amygdala (LAn) mediate encoding of conditioned fear memory. It is not known, however, whether the convergent auditory conditioned stimulus (CSa) pathways interact with each other to produce changes in their synaptic function. We found that continuous paired stimulation of thalamic and cortical auditory inputs to the LAn with the interstimulus delay approximately mimicking a temporal pattern of their activation in behaving animals during auditory fear conditioning resulted in persistent potentiation of synaptic transmission in the cortico-amygdala pathway in rat brain slices. This form of input timing–dependent plasticity (ITDP) in cortical input depends on inositol 1,4,5-trisphosphate (InsP3)-sensitive Ca2+ release from internal stores and postsynaptic Ca2+ influx through calcium-permeable kainate receptors during its induction. ITDP in the auditory projections to the LAn, determined by characteristics of presynaptic activity patterns, may contribute to the encoding of the complex CSa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Paired stimulation of thalamic and cortical inputs induces ITDP at the cortico-LAn synapses.
Figure 2: Dependence of ITDP induction on the time interval between TSt and CSt.
Figure 3: Requirements for the induction of ITDP.
Figure 4: Coactivation of GluR5-containing KARs and group I mGluRs during ITDP induction.
Figure 5: Spatiotemporal summation of KAR-mediated EPSCs during TSt-CSt stimulation.
Figure 6: KARs in dendritic spines of LAn neurons are Ca2+ permeable.
Figure 7: Fractional contribution of the AMPAR-, KAR- and NMDAR-mediated synaptic components to the compound EPSP during the TSt-CSt paired stimulation.
Figure 8: ITDP in cortico-LAn pathway is occluded in slices from fear-conditioned rats.

Similar content being viewed by others

References

  1. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Maren, S. & Quirk, G.J. Neuronal signalling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Romanski, L.M. & LeDoux, J.E. Equipotentiality of thalamo-amygdala and thalamo-cortico-amygdala circuits in auditory fear conditioning. J. Neurosci. 12, 4501–4509 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campeau, S. & Davis, M. Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J. Neurosci. 15, 2312–2327 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Armony, J.L., Servan-Schreiber, D., Romanski, L.M., Cohen, J.D. & LeDoux, J.E. Stimulus generalization of fear responses: effects of auditory cortex lesions in a computational model and in rats. Cereb. Cortex 7, 157–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Clugnet, M.C. & LeDoux, J.E. Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. J. Neurosci. 10, 2818–2824 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bordi, F. & LeDoux, J.E. Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp. Brain Res. 98, 275–286 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Quirk, G.J., Repa, C. & LeDoux, J.E. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15, 1029–1039 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Quirk, G.J., Armony, J.L. & LeDoux, J.E. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19, 613–624 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Rogan, M.T., Staubli, U.V. & LeDoux, J.E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. McKernan, M.G. & Shinnick-Gallagher, P. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390, 607–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Tsvetkov, E., Carlezon, W.A., Benes, F.M., Kandel, E.R. & Bolshakov, V.Y. Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34, 289–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Shumyatsky, G.P. et al. Stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 123, 697–709 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Tsvetkov, E., Shin, R.M. & Bolshakov, V.Y. Glutamate uptake determines pathway specificity of long-term potentiation in the neural circuitry of fear conditioning. Neuron 41, 139–151 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Doyère, V., Schafe, G.E., Sigurdsson, T. & LeDoux, J.E. Long-term potentiation in freely moving rats reveals asymmetries in thalamic and cortical inputs to the lateral amygdala. Eur. J. Neurosci. 17, 2703–2715 (2003).

    Article  PubMed  Google Scholar 

  17. Dudman, J.T., Tsay, D. & Siegelbaum, S.A. A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron 56, 866–879 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahanty, N.K. & Sah, P. Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394, 683–687 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. LeDoux, J.E., Ruggiero, D.A. & Reis, D.J. Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J. Comp. Neurol. 242, 182–213 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Mascagni, F., McDonald, A.J. & Coleman, J.R. Corticoamygdaloid and corticocortical projections of the rat temporal cortex: a Phaseolus vulgaris leucoagglutinin study. Neuroscience 57, 697–715 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Romanski, L.M. & LeDoux, J.E. Information cascade from primary auditory cortex to the amygdala: corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cereb. Cortex 3, 515–532 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Shin, R.M., Tsvetkov, E. & Bolshakov, V.Y. Spatiotemporal asymmetry of associative synaptic plasticity in fear conditioning pathways. Neuron 52, 883–896 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shin, R.M. et al. Hierarchical order of coexisting pre- and postsynaptic forms of long-term potentiation at synapses in amygdala. Proc. Natl. Acad. Sci. USA 107, 19073–19078 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, X.F., Stutzmann, G.E. & LeDoux, J.E. Convergent but temporally separated inputs to lateral amygdala neurons from the auditory thalamus and auditory cortex use different postsynaptic receptors: in vivo intracellular and extracellular recordings in fear conditioning pathways. Learn. Mem. 3, 229–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Johnson, L.R. et al. A recurrent network in the lateral amygdala: a mechanism for coincidence detection. Front. Neural Circuits 2, 3 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sugita, S., Tanaka, E. & North, R.A. Membrane properties and synaptic potentials of three types of neurone in rat lateral amygdala. J. Physiol. (Lond.) 460, 705–718 (1993).

    Article  CAS  Google Scholar 

  27. Li, X.F., Armony, J.L. & LeDoux, J.E. GABAA and GABAB receptors differentially regulate synaptic transmission in the auditory thalamo-amygdala pathway: an in vivo microiontophoretic study and a model. Synapse 24, 115–124 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Lang, E.J. & Paré, D. Similar inhibitory processes dominate the responses of cat lateral amygdaloid projection neurons to their various afferents. J. Neurophysiol. 77, 341–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Bissière, S., Humeau, Y. & Lüthi, A. Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat. Neurosci. 6, 587–592 (2003).

    Article  PubMed  Google Scholar 

  30. Kodirov, S.A. et al. Synaptically released zinc gates long-term potentiation in fear conditioning pathways. Proc. Natl. Acad. Sci. USA 103, 15218–15223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tully, K., Li, Y., Tsvetkov, E. & Bolshakov, V.Y. Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc. Natl. Acad. Sci. USA 104, 14146–14150 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Asztely, F., Erdemli, G. & Kullmann, D.M. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron 18, 281–293 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, Y.Y. & Kandel, E.R. Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21, 169–178 (1998).

    CAS  PubMed  Google Scholar 

  34. Bauer, E.P., Schafe, G.E. & LeDoux, J.E. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci. 22, 5239–5249 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, H., Chen, A., Xing, G., Wei, M.L. & Rogawski, M.A. Kainate receptor–mediated heterosynaptic facilitation in the amygdala. Nat. Neurosci. 4, 612–620 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Bortolotto, Z.A. et al. Kainate receptors are involved in synaptic plasticity. Nature 402, 297–301 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Raymond, C.R. & Redman, S.J. Different calcium sources are narrowly tuned to the induction of different forms of LTP. J. Neurophysiol. 88, 249–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Bardo, S., Cavazzini, M.G. & Emptage, N. The role of the endoplasmic reticulum Ca2+ store in the plasticity of central neurons. Trends Pharmacol. Sci. 27, 78–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Li, P. et al. Kainate-receptor–mediated sensory synaptic transmission in mammalian spinal cord. Nature 397, 161–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Ko, S., Zhao, M.G., Toyoda, H., Qiu, C.S. & Zhuo, M. Altered behavioral responses to noxious stimuli and fear in glutamate receptor 5 (GluR5)- or GluR6-deficient mice. J. Neurosci. 25, 977–984 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burnashev, N., Villarroel, A. & Sakmann, B. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J. Physiol. (Lond.) 496, 165–173 (1996).

    Article  CAS  Google Scholar 

  42. Bowie, D. & Mayer, M.L. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453–462 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Wilding, T.J., Zhou, Y. & Huettner, J.E. Q/R site editing controls kainate receptor inhibition by membrane fatty acids. J. Neurosci. 25, 9470–9478 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koike, M., Iino, M. & Ozawa, S. Blocking effect of 1-naphthyl acetyl spermine on Ca2+-permeable AMPA receptors in cultured rat hippocampal neurons. Neurosci. Res. 29, 27–36 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Humeau, Y., Shaban, H., Bissiere, S. & Lüthi, A. Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426, 841–845 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Rodrigues, S.M., Bauer, E.P., Farb, C.R., Schafe, G.E. & LeDoux, J.E. The group I metabotropic glutamate receptor mGluR5 is required for fear memory formation and long-term potentiation in the lateral amygdala. J. Neurosci. 22, 5219–5229 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Humeau, Y. et al. Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala. Neuron 45, 119–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Harvey, C.D. & Svoboda, K. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450, 1195–1200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Paré, D. & Collins, D.R. Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats. J. Neurosci. 20, 2701–2710 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Richardson, R.J., Blundon, J.A., Bayazitov, I.T. & Zakharenko, S.S. Connectivity patterns revealed by mapping of active inputs on dendrites of thalamorecipient neurons in the auditory cortex. J. Neurosci. 29, 6406–6417 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Li and K. Tully for constructive discussions. This study was supported by US National Institutes of Health grants MH083011, MH090464 (V.Y.B.) and MH079079 (S.S.Z.), the National Alliance for Research on Schizophrenia and Depression (V.Y.B.), Whitehall Foundation (V.Y.B.), and US Army Medical Research Acquisition Activity grant #W81XWH-08-2-0126 (V.Y.B.).

Author information

Authors and Affiliations

Authors

Contributions

J.-H.C., I.T.B., E.G.M., K.M.M., W.A.C. and S.S.Z. performed the experiments and analyzed the results. V.Y.B. and J.-H.C. designed the experiments, interpreted the results and wrote the paper.

Corresponding author

Correspondence to Vadim Y Bolshakov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 (PDF 2620 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, JH., Bayazitov, I., Meloni, E. et al. Coactivation of thalamic and cortical pathways induces input timing–dependent plasticity in amygdala. Nat Neurosci 15, 113–122 (2012). https://doi.org/10.1038/nn.2993

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2993

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing