Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Songbirds possess the spontaneous ability to discriminate syntactic rules


Whether the computational systems in language perception involve specific abilities in humans is debated. The vocalizations of songbirds share many features with human speech, but whether songbirds possess a similar computational ability to process auditory information as humans is unknown. We analyzed their spontaneous discrimination of auditory stimuli and found that the Bengalese finch (Lonchura striata var. domestica) can use the syntactical information processing of syllables to discriminate songs). These finches were also able to acquire artificial grammatical rules from synthesized syllable strings and to discriminate novel auditory information according to them. We found that a specific brain region was involved in such discrimination and that this ability was acquired postnatally through the encounter with various conspecific songs. Our results indicate that passerine songbirds spontaneously acquire the ability to process hierarchical structures, an ability that was previously supposed to be specific to humans.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Discrimination of SM songs.
Figure 2: Acquisition and discrimination of artificial syntactic rules.
Figure 3: Acquisition and discrimination of artificial syntactic rules with embeddings.
Figure 4: Development of the ability for syntactical analysis of syllables.
Figure 5: Involvement of the anterior nidopallium in the syntactical analysis of syllables.


  1. 1

    Chomsky, N. Syntactic Structures (Mouton, Berlin, 1957).

  2. 2

    Pinker, S. The Language Instinct (William Morrow, New York, 1994).

  3. 3

    Hauser, M.D., Chomsky, N. & Fitch, W.T. The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Fitch, W.T. & Hauser, M.D. Computational constraints on syntactic processing in a nonhuman primate. Science 303, 377–380 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Pinker, S. & Jackendoff, R. The faculty of language: what's special about it? Cognition 95, 201–236 (2005).

    Article  Google Scholar 

  6. 6

    Perruchet, P. & Rey, A. Does the mastery of center-embedded linguistic structures distinguish humans from nonhuman primates? Psychon. Bull. Rev. 12, 307–313 (2005).

    Article  Google Scholar 

  7. 7

    Saffran, J. et al. Grammatical pattern learning by human infants and cotton-top tamarin monkeys. Cognition 107, 479–500 (2008).

    Article  Google Scholar 

  8. 8

    Friederici, A.D. Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. 6, 78–84 (2002).

    Article  Google Scholar 

  9. 9

    Kuperberg, G.R. Neural mechanisms of language comprehension: challenges to syntax. Brain Res. 1146, 23–49 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Wahl, M. et al. The human thalamus processes syntactic and semantic language violations. Neuron 59, 695–707 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Grodzinsky, Y. & Santi, A. The battle for Broca's region. Trends Cogn. Sci. 12, 474–480 (2008).

    Article  Google Scholar 

  13. 13

    Hickok, G. The functional neuroanatomy of language. Phys. Life Rev. 6, 121–143 (2009).

    Article  Google Scholar 

  14. 14

    Kuhl, P.K. Early language acquisition: cracking the speech code. Nat. Rev. Neurosci. 5, 831–843 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Doupe, A.J. & Kuhl, P.K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Jarvis, E.D. Learned birdsong and the neurobiology of human language. Ann. NY Acad. Sci. 1016, 749–777 (2004).

    Article  Google Scholar 

  17. 17

    Bolhuis, J.J. & Gahr, M. Neural mechanisms of birdsong memory. Nat. Rev. Neurosci. 7, 347–357 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Bolhuis, J.J., Okanoya, K. & Scharff, C. Twitter evolution: converging mechanisms in birdsong and human speech. Nat. Rev. Neurosci. 11, 747–759 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Okanoya, K. The Bengalese finch: a window on the behavioral neurobiology of birdsong syntax. Ann. NY Acad. Sci. 1016, 724–735 (2004).

    Article  Google Scholar 

  20. 20

    Gentner, T.Q., Fenn, K.M., Margoliash, D. & Nusbaum, H.C. Recursive syntactic pattern learning by songbirds. Nature 440, 1204–1207 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Hauser, M., Barner, D. & O'Donnell, T. Evolutionary linguistics: a new look at an old landscape. Lang. Learn. Dev. 3, 101–132 (2007).

    Article  Google Scholar 

  22. 22

    Vicario, D.S. Using learned calls to study sensory-motor integration in songbirds. Ann. NY Acad. Sci. 1016, 246–262 (2004).

    Article  Google Scholar 

  23. 23

    Stripling, R., Milewski, L., Kruse, A.A. & Clayton, D.F. Rapidly learned song-discrimination without behavioral reinforcement in adult male zebra finches (Taeniopygia guttata). Neurobiol. Learn. Mem. 79, 41–50 (2003).

    Article  Google Scholar 

  24. 24

    Chew, S.J., Mello, C., Nottebohm, F., Jarvis, E. & Vicario, D.S. Decrements in auditory responses to a repeated conspecific song are long-lasting and require two periods of protein synthesis in the songbird forebrain. Proc. Natl. Acad. Sci. USA 92, 3406–3410 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Stripling, R., Volman, S.F. & Clayton, D.F. Response modulation in the zebra finch neostriatum: relationship to nuclear gene regulation. J. Neurosci. 17, 3883–3893 (1997).

    CAS  Article  Google Scholar 

  26. 26

    Chomsky, N. Aspects of the Theory of Syntax (MIT Press, Cambridge, Massachusetts, 1965).

  27. 27

    Hauser, M.D., Newport, E.L. & Aslin, R.N. Segmentation of the speech stream in a non-human primate: statistical learning in cotton-top tamarins. Cognition 78, B53–B64 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Saffran, J.R., Aslin, R.N. & Newport, E.L. Statistical learning by 8-month-old infants. Science 274, 1926–1928 (1996).

    CAS  Article  Google Scholar 

  29. 29

    van Heijningen, C.A., de Visser, J., Zuidema, W. & ten Cate, C. Simple rules can explain discrimination of putative recursive syntactic structures by a songbird species. Proc. Natl. Acad. Sci. USA 106, 20538–20543 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Hopcroft, J., Motwani, R. & Ullman, J. Introduction to Automata Theory, Languages, and Computation (Addison-Wesley-Longman, Massachusetts, 2001).

  31. 31

    de Vries, M.H., Monaghan, P., Knecht, S. & Zwitserlood, P. Syntactic structure and artificial grammar learning: the learnability of embedded hierarchical structures. Cognition 107, 763–774 (2008).

    Article  Google Scholar 

  32. 32

    Mello, C.V., Velho, T.A. & Pinaud, R. Song-induced gene expression: a window on song auditory processing and perception. Ann. NY Acad. Sci. 1016, 263–281 (2004).

    CAS  Article  Google Scholar 

  33. 33

    Mooney, R. Neurobiology of song learning. Curr. Opin. Neurobiol. 19, 654–660 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Marler, P.S. V. Innate differences in singing behaviour of sparrows reared in isolation from adult conspecific song. Anim. Behav. 33, 57–71 (1985).

    Article  Google Scholar 

  35. 35

    Fehér, O., Wang, H., Saar, S., Mitra, P.P. & Tchernichovski, O. De novo establishment of wild-type song culture in the zebra finch. Nature 459, 564–568 (2009).

    Article  Google Scholar 

  36. 36

    Marler, P. Birdsong and speech development: could there be parallels? Am. Sci. 58, 669–673 (1970).

    CAS  PubMed  Google Scholar 

  37. 37

    Peña, M., Bonatti, L.L., Nespor, M. & Mehler, J. Signal-driven computations in speech processing. Science 298, 604–607 (2002).

    Article  Google Scholar 

  38. 38

    Burt, J.M., Lent, K.L., Beecher, M.D. & Brenowitz, E.A. Lesions of the anterior forebrain song control pathway in female canaries affect song perception in an operant task. J. Neurobiol. 42, 1–13 (2000).

    CAS  Article  Google Scholar 

  39. 39

    Scharff, C., Nottebohm, F. & Cynx, J. Conspecific and heterospecific song discrimination in male zebra finches with lesions in the anterior forebrain pathway. J. Neurobiol. 36, 81–90 (1998).

    CAS  Article  Google Scholar 

  40. 40

    Johnson, F., Sablan, M.M. & Bottjer, S.W. Topographic organization of a forebrain pathway involved with vocal learning in zebra finches. J. Comp. Neurol. 358, 260–278 (1995).

    CAS  Article  Google Scholar 

  41. 41

    Prather, J.F., Nowicki, S., Anderson, R.C., Peters, S. & Mooney, R. Neural correlates of categorical perception in learned vocal communication. Nat. Neurosci. 12, 221–228 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Gentner, T.Q., Hulse, S.H., Bentley, G.E. & Ball, G.F. Individual vocal recognition and the effect of partial lesions to HVc on discrimination, learning, and categorization of conspecific song in adult songbirds. J. Neurobiol. 42, 117–133 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Gobes, S.M. & Bolhuis, J.J. Birdsong memory: a neural dissociation between song recognition and production. Curr. Biol. 17, 789–793 (2007).

    CAS  Article  Google Scholar 

  44. 44

    Friederici, A.D. Processing local transitions versus long-distance syntactic hierarchies. Trends Cogn. Sci. 8, 245–247 (2004).

    Article  Google Scholar 

  45. 45

    Friederici, A.D., Bahlmann, J., Heim, S., Schubotz, R.I. & Anwander, A. The brain differentiates human and non-human grammars: functional localization and structural connectivity. Proc. Natl. Acad. Sci. USA 103, 2458–2463 (2006).

    CAS  Article  Google Scholar 

  46. 46

    Bahlmann, J., Schubotz, R.I. & Friederici, A.D. Hierarchical artificial grammar processing engages Broca's area. Neuroimage 42, 525–534 (2008).

    Article  Google Scholar 

  47. 47

    Bottjer, S.W., Halsema, K.A., Brown, S.A. & Miesner, E.A. Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. J. Comp. Neurol. 279, 312–326 (1989).

    CAS  Article  Google Scholar 

  48. 48

    Friederici, A.D. The neural basis of language development and its impairment. Neuron 52, 941–952 (2006).

    CAS  Article  Google Scholar 

  49. 49

    Hickok, G. & Poeppel, D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92, 67–99 (2004).

    Article  Google Scholar 

  50. 50

    Sakai, K.L. Language acquisition and brain development. Science 310, 815–819 (2005).

    CAS  Article  Google Scholar 

Download references


We thank N. Yokoi, M. Wajima and F. Ageta for maintenance of animals, as well as members of Watanabe laboratory for various suggestions and K. Fujita for critical reading of the initial manuscript. This work was supported by Grants-in-Aid for Scientific Research of Japan Society for the Promotion of Science (K.A.) and of the Ministry of Education, Culture, Sports, Science and Technology in Japan (D.W.), the Precursory Research for Embryonic Science and Technology program of Japan Science and Technology Agency (K.A.) and scientific research grants from the Sumitomo Foundation (K.A.), the Inamori Foundation (K.A.) and Takeda Science Foundation (D.W.).

Author information




K.A. conceived the project, performed all the experiments and wrote the paper. D.W. supervised the project and provided feedback on the manuscript.

Corresponding author

Correspondence to Kentaro Abe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 841 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abe, K., Watanabe, D. Songbirds possess the spontaneous ability to discriminate syntactic rules. Nat Neurosci 14, 1067–1074 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing