Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila


Aversive olfactory memory is formed in the mushroom bodies in Drosophila melanogaster. Memory retrieval requires mushroom body output, but the manner in which a memory trace in the mushroom body drives conditioned avoidance of a learned odor remains unknown. To identify neurons that are involved in olfactory memory retrieval, we performed an anatomical and functional screen of defined sets of mushroom body output neurons. We found that MB-V2 neurons were essential for retrieval of both short- and long-lasting memory, but not for memory formation or memory consolidation. MB-V2 neurons are cholinergic efferent neurons that project from the mushroom body vertical lobes to the middle superiormedial protocerebrum and the lateral horn. Notably, the odor response of MB-V2 neurons was modified after conditioning. As the lateral horn has been implicated in innate responses to repellent odorants, we propose that MB-V2 neurons recruit the olfactory pathway involved in innate odor avoidance during memory retrieval.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: MB-V2 neurons connect the mushroom body to the lateral horn and middle superior medial protocerebrum.
Figure 2: Output of the MB-V2 neurons is specifically required for the retrieval of short-lasting memory.
Figure 3: Suppressing MB-V2 neurons in MZ160 rescues the memory defect.
Figure 4: Output of the MB-V2 neurons is required for retrieval of consolidated long-lasting memories.
Figure 5: MB-V2 neurons are cholinergic.
Figure 6: MB-V2 neurons in naive flies respond to olfactory stimuli.
Figure 7: MB-V2 neurons show a reduced response to the trained odor after conditioning.


  1. 1

    Keene, A.C. & Waddell, S. Drosophila olfactory memory: single genes to complex neural circuits. Nat. Rev. Neurosci. 8, 341–354 (2007).

    CAS  Article  Google Scholar 

  2. 2

    McGuire, S.E., Deshazer, M. & Davis, R.L. Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog. Neurobiol. 76, 328–347 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Tully, T., Preat, T., Boynton, S.C. & Del Vecchio, M. Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Masse, N.Y., Turner, G.C. & Jefferis, G.S. Olfactory information processing in Drosophila. Curr. Biol. 19, R700–R713 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Aso, Y. et al. Specific dopaminergic neurons for the formation of labile aversive memory. Curr. Biol. 20, 1445–1451 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Claridge-Chang, A. et al. Writing memories with light-addressable reinforcement circuitry. Cell 139, 405–415 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Schwaerzel, M. et al. Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J. Neurosci. 23, 10495–10502 (2003).

    CAS  Article  Google Scholar 

  8. 8

    de Belle, J.S. & Heisenberg, M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263, 692–695 (1994).

    CAS  Article  Google Scholar 

  9. 9

    Wang, Y. et al. Blockade of neurotransmission in Drosophila mushroom bodies impairs odor attraction, but not repulsion. Curr. Biol. 13, 1900–1904 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Crittenden, J.R., Skoulakis, E.M., Han, K.A., Kalderon, D. & Davis, R.L. Tripartite mushroom body architecture revealed by antigenic markers. Learn. Mem. 5, 38–51 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Gervasi, N., Tchenio, P. & Preat, T. PKA dynamics in Drosophila olfactory learning and memory center: coincidence detection by Rutabaga adenylyl cyclase and regulation by Dunce phosphodiesterase. Neuron 65, 516–529 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Tomchik, S.M. & Davis, R.L. Dynamics of learning-related cAMP signaling and stimulus integration in the Drosophila olfactory pathway. Neuron 64, 510–521 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Wang, Y., Mamiya, A., Chiang, A.S. & Zhong, Y. Imaging of an early memory trace in the Drosophila mushroom body. J. Neurosci. 28, 4368–4376 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Yu, D., Akalal, D.B. & Davis, R.L. Drosophila alpha/beta mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron 52, 845–855 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Isabel, G., Pascual, A. & Preat, T. Exclusive consolidated memory phases in Drosophila. Science 304, 1024–1027 (2004).

    CAS  Article  Google Scholar 

  16. 16

    McGuire, S.E., Le, P.T. & Davis, R.L. The role of Drosophila mushroom body signaling in olfactory memory. Science 293, 1330–1333 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Ito, K. et al. The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn. Mem. 5, 52–77 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Tanaka, N.K., Tanimoto, H. & Ito, K. Neuronal assemblies of the Drosophila mushroom body. J. Comp. Neurol. 508, 711–755 (2008).

    Article  Google Scholar 

  19. 19

    Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Zhang, Y.Q., Rodesch, C.K. & Broadie, K. Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34, 142–145 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Robinson, I.M., Ranjan, R. & Schwarz, T.L. Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C(2)A domain. Nature 418, 336–340 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Krashes, M.J. & Waddell, S. Rapid consolidation to a radish and protein synthesis–dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. J. Neurosci. 28, 3103–3113 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Colomb, J., Kaiser, L., Chabaud, M.A. & Preat, T. Parametric and genetic analysis of Drosophila appetitive long-term memory and sugar motivation. Genes Brain Behav. 8, 407–415 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Kitamoto, T. Conditional disruption of synaptic transmission induces male-male courtship behavior in Drosophila. Proc. Natl. Acad. Sci. USA 99, 13232–13237 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Sepp, K.J. & Auld, V.J. Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster. Genetics 151, 1093–1101 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Pfeiffer, B.D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Yasuyama, K., Meinertzhagen, I.A. & Schurmann, F.W. Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J. Comp. Neurol. 445, 211–226 (2002).

    Article  Google Scholar 

  29. 29

    Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Mauelshagen, J. Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. J. Neurophysiol. 69, 609–625 (1993).

    CAS  Article  Google Scholar 

  31. 31

    Okada, R., Rybak, J., Manz, G. & Menzel, R. Learning-related plasticity in PE1 and other mushroom body–extrinsic neurons in the honeybee brain. J. Neurosci. 27, 11736–11747 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Caporale, N. & Dan, Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Bender, V.A., Bender, K.J., Brasier, D.J. & Feldman, D.E. Two coincidence detectors for spike timing–dependent plasticity in somatosensory cortex. J. Neurosci. 26, 4166–4177 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Hashimotodani, Y. et al. Phospholipase Cbeta serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron 45, 257–268 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Menzel, R. & Manz, G. Neural plasticity of mushroom body-extrinsic neurons in the honeybee brain. J. Exp. Biol. 208, 4317–4332 (2005).

    Article  Google Scholar 

  36. 36

    Liu, X. & Davis, R.L. The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning. Nat. Neurosci. 12, 53–59 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Bashir, Z.I. On long-term depression induced by activation of G protein–coupled receptors. Neurosci. Res. 45, 363–367 (2003).

    CAS  Article  Google Scholar 

  38. 38

    Tanaka, N.K., Awasaki, T., Shimada, T. & Ito, K. Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr. Biol. 14, 449–457 (2004).

    CAS  Article  Google Scholar 

  39. 39

    Pascual, A. & Preat, T. Localization of long-term memory within the Drosophila mushroom body. Science 294, 1115–1117 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Tully, T. & Quinn, W.G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. [A] 157, 263–277 (1985).

    CAS  Article  Google Scholar 

  41. 41

    Wong, A.M., Wang, J.W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002).

    CAS  Article  Google Scholar 

  42. 42

    Gordon, M.D. & Scott, K. Motor control in a Drosophila taste circuit. Neuron 61, 373–384 (2009).

    CAS  Article  Google Scholar 

  43. 43

    Otsuna, H. & Ito, K. Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J. Comp. Neurol. 497, 928–958 (2006).

    Article  Google Scholar 

  44. 44

    Featherstone, D.E. et al. Presynaptic glutamic acid decarboxylase is required for induction of the postsynaptic receptor field at a glutamatergic synapse. Neuron 27, 71–84 (2000).

    CAS  Article  Google Scholar 

  45. 45

    Sakai, T., Kasuya, J., Kitamoto, T. & Aigaki, T. The Drosophila TRPA channel, Painless, regulates sexual receptivity in virgin females. Genes Brain Behav. 8, 546–557 (2009).

    CAS  Article  Google Scholar 

  46. 46

    Daniels, R.W., Gelfand, M.V., Collins, C.A. & DiAntonio, A. Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS. J. Comp. Neurol. 508, 131–152 (2008).

    CAS  Article  Google Scholar 

  47. 47

    Takagawa, K. & Salvaterra, P. Analysis of choline acetyltransferase protein in temperature sensitive mutant flies using newly generated monoclonal antibody. Neurosci. Res. 24, 237–243 (1996).

    CAS  Article  Google Scholar 

  48. 48

    Neckameyer, W.S., Woodrome, S., Holt, B. & Mayer, A. Dopamine and senescence in Drosophila melanogaster. Neurobiol. Aging 21, 145–152 (2000).

    CAS  Article  Google Scholar 

  49. 49

    Klagges, B.R. et al. Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J. Neurosci. 16, 3154–3165 (1996).

    CAS  Article  Google Scholar 

  50. 50

    Fiala, A. & Spall, T. In vivo calcium imaging of brain activity in Drosophila by transgenic cameleon expression. Sci. STKE 2003, PL6 (2003).

    PubMed  Google Scholar 

Download references


We thank J. Urban and G.M. Technau for the MZ160 line, the members of the NP consortium for the NP2492 line, J.-M. Dura for the y1w1118;GAL80[y+],Sb line and for discussions, L.L. Looger for the UAS-GCaMP3 line, T. Kitamoto for the GAD1-GAL80 and Cha3.3kb-GAL80 lines, and V. Hakim, I. Rivals and members of our laboratories for discussions. This work was supported by grants from the Japan Society for the Promotion of Science (K.I.), the Agence Nationale pour la Recherche (T.P.), the Fondation Bettencourt-Schueler (T.P.), the Fondation pour la Recherche Médicale (T.P.), the Emmy-Noether Program from Deutsche Forschungsgemeinschaft (H.T.), the Bernstein Focus Learning from Bundesministerium für Bildung und Forschung (H.T.) and the Max-Planck-Gesellschaft (H.T.). J.S. and G.I. were supported by the Fondation pour la Recherche Médicale, P.-Y.P. was supported by a grant from Région Ile-de-France and Y.A. was supported by Deutscher Akademischer Austausch Dienst.

Author information




Y.A. and H.T. designed and I.S., S.R.T. and V.T. carried out anatomical experiments. I.S., Y.A. and H.T. analyzed the microscopic data and assembled figures. K.I. and G.M.R. provided Gal4 lines with their expression patterns. J.S., G.I. and T.P. designed and J.S., S.T. and P.-Y.P. carried out behavior experiments. J.S. generated the NP2492-Gal80 mutant. P.-Y.P., T.P. and P.T. designed the in vivo imaging experiments and P.-Y.P. carried them out. J.S., P.-Y.P., I.S., Y.A., H.T. and T.P. wrote the paper. T.P. and H.T. supervised the work.

Corresponding authors

Correspondence to Hiromu Tanimoto or Thomas Preat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 16348 kb)

Supplementary Video 1

Expression pattern of NP2492 in the brain (MOV 3358 kb)

Supplementary Video 2

Expression pattern of MZ160 in the brain (MOV 2495 kb)

Supplementary Video 3

Expression pattern of MZ160, Cha3.3kb-GAL80 in the brain (MOV 1968 kb)

Supplementary Video 4

Expression pattern of MZ160, NP2492-GAL80 in the brain (MOV 2207 kb)

Supplementary Video 5

Expression pattern of R71D08 in the brain (MOV 2700 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Séjourné, J., Plaçais, PY., Aso, Y. et al. Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila. Nat Neurosci 14, 903–910 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing