Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KCNQ5 channels control resting properties and release probability of a synapse

Abstract

Little is known about which ion channels determine the resting electrical properties of presynaptic membranes. In recordings made from the rat calyx of Held, a giant mammalian terminal, we found resting potential to be controlled by KCNQ (Kv7) K+ channels, most probably KCNQ5 (Kv7.5) homomers. Unlike most KCNQ channels, which are activated only by depolarizing stimuli, the presynaptic channels began to activate just below the resting potential. As a result, blockers and activators of KCNQ5 depolarized or hyperpolarized nerve terminals, respectively, markedly altering resting conductance. Moreover, the background conductance set by KCNQ5 channels, together with Na+ and hyperpolarization-activated and cyclic nucleotide–gated (HCN) channels, determined the size and time course of the response to subthreshold stimuli. Signaling pathways known to directly affect exocytic machinery also regulated KCNQ5 channels, and increase or decrease of KCNQ5 channel activity controlled release probability through alterations in resting potential. Thus, ion channel determinants of presynaptic resting potential also control synaptic strength.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of presynaptic KCNQ current.
Figure 2: Voltage dependence of presynaptic KCNQ current.
Figure 3: KCNQ5 is expressed in the calyx of Held.
Figure 4: Effects of KCNQ channels on resting membrane properties of calyces.
Figure 5: KCNQ channels determine properties of subthreshold stimuli.
Figure 6: Modulation of KCNQ current by PIP2 and protein kinase C.
Figure 7: Regulation of transmitter release by KCNQ channels.

Similar content being viewed by others

References

  1. Awatramani, G.B., Price, G.D. & Trussell, L.O. Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 48, 109–121 (2005).

    Article  CAS  Google Scholar 

  2. Alle, H. & Geiger, J.R. Analog signalling in mammalian cortical axons. Curr. Opin. Neurobiol. 18, 314–320 (2008).

    Article  CAS  Google Scholar 

  3. Torborg, C.L., Berg, A.P., Jeffries, B.W., Bayliss, D.A. & McBain, C.J. TASK-like conductances are present within hippocampal CA1 stratum oriens interneuron subpopulations. J. Neurosci. 26, 7362–7367 (2006).

    Article  CAS  Google Scholar 

  4. Brown, D.A. & Passmore, G.M. Neural KCNQ (Kv7) channels. Br. J. Pharmacol. 156, 1185–1195 (2009).

    Article  CAS  Google Scholar 

  5. Oliver, D., Knipper, M., Derst, C. & Fakler, B. Resting potential and submembrane calcium concentration of inner hair cells in the isolated mouse cochlea are set by KCNQ-type potassium channels. J. Neurosci. 23, 2141–2149 (2003).

    Article  CAS  Google Scholar 

  6. Shah, M.M., Migliore, M., Valencia, I., Cooper, E.C. & Brown, D.A. Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. USA 105, 7869–7874 (2008).

    Article  CAS  Google Scholar 

  7. Forsythe, I.D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J. Physiol. (Lond.) 479, 381–387 (1994).

    Article  Google Scholar 

  8. Dodson, P.D. & Forsythe, I.D. Presynaptic K+ channels: electrifying regulators of synaptic terminal excitability. Trends Neurosci. 27, 210–217 (2004).

    Article  CAS  Google Scholar 

  9. Kim, J.H., Sizov, I., Dobretsov, M. & von Gersdorff, H. Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the α3 Na+/K+-ATPase. Nat. Neurosci. 10, 196–205 (2007).

    Article  CAS  Google Scholar 

  10. Huang, H. & Trussell, L.O. Control of presynaptic function by a persistent Na+ current. Neuron 60, 975–979 (2008).

    Article  CAS  Google Scholar 

  11. Ishikawa, T. et al. Distinct roles of Kv1 and Kv3 potassium channels at the calyx of Held presynaptic terminal. J. Neurosci. 23, 10445–10453 (2003).

    Article  CAS  Google Scholar 

  12. Taschenberger, H. & von Gersdorff, H. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J. Neurosci. 20, 9162–9173 (2000).

    Article  CAS  Google Scholar 

  13. Caminos, E., Garcia-Pino, E., Martinez-Galan, J.R. & Juiz, J.M. The potassium channel KCNQ5/Kv7.5 is localized in synaptic endings of auditory brainstem nuclei of the rat. J. Comp. Neurol. 505, 363–378 (2007).

    Article  CAS  Google Scholar 

  14. Garcia-Pino, E., Caminos, E. & Juiz, J.M. KCNQ5 reaches synaptic endings in the auditory brainstem at hearing onset and targeting maintenance is activity-dependent. J. Comp. Neurol. 518, 1301–1314 (2010).

    CAS  PubMed  Google Scholar 

  15. Dodson, P.D., Barker, M.C. & Forsythe, I.D. Two heteromeric Kv1 potassium channels differentially regulate action potential firing. J. Neurosci. 22, 6953–6961 (2002).

    Article  CAS  Google Scholar 

  16. Song, P. et al. Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons. Nat. Neurosci. 8, 1335–1342 (2005).

    Article  CAS  Google Scholar 

  17. Wang, H.S. et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282, 1890–1893 (1998).

    Article  CAS  Google Scholar 

  18. Elmedyb, P. et al. Modulation of ERG channels by XE991. Basic Clin. Pharmacol. Toxicol. 100, 316–322 (2007).

    Article  CAS  Google Scholar 

  19. Schroeder, B.C., Hechenberger, M., Weinreich, F., Kubisch, C. & Jentsch, T.J. KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J. Biol. Chem. 275, 24089–24095 (2000).

    Article  CAS  Google Scholar 

  20. Leão, R.N., Tan, H.M. & Fisahn, A. Kv7/KCNQ channels control action potential phasing of pyramidal neurons during hippocampal gamma oscillations in vitro. J. Neurosci. 29, 13353–13364 (2009).

    Article  Google Scholar 

  21. Miceli, F., Cilio, M.R., Taglialatela, M. & Bezanilla, F. Gating currents from neuronal Kv7.4 channels: general features and correlation with the ionic conductance. Channels (Austin) 3, 274–283 (2009).

    Article  Google Scholar 

  22. Tatulian, L., Delmas, P., Abogadie, F.C. & Brown, D.A. Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine. J. Neurosci. 21, 5535–5545 (2001).

    Article  CAS  Google Scholar 

  23. Cooper, E.C., Harrington, E., Jan, Y.N. & Jan, L.Y. M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J. Neurosci. 21, 9529–9540 (2001).

    Article  CAS  Google Scholar 

  24. Devaux, J.J., Kleopa, K.A., Cooper, E.C. & Scherer, S.S. KCNQ2 is a nodal K+ channel. J. Neurosci. 24, 1236–1244 (2004).

    Article  CAS  Google Scholar 

  25. Kharkovets, T. et al. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc. Natl. Acad. Sci. USA 97, 4333–4338 (2000).

    Article  CAS  Google Scholar 

  26. Brueggemann, L.I., Mackie, A.R., Martin, J.L., Cribbs, L.L. & Byron, K.L. Diclofenac distinguishes among homomeric and heteromeric potassium channels composed of KCNQ4 and KCNQ5 subunits. Mol. Pharmacol. 79, 10–23 (2011).

    Article  CAS  Google Scholar 

  27. Soh, H. & Tzingounis, A.V. The specific slow afterhyperpolarization inhibitor UCL2077 is a subtype-selective blocker of the epilepsy associated KCNQ channels. Mol. Pharmacol. 78, 1088–1095 (2010).

    Article  CAS  Google Scholar 

  28. Goldman, A.M. et al. Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci. Transl. Med. 1, 2ra6 (2009).

    Article  CAS  Google Scholar 

  29. Turecek, R. & Trussell, L.O. Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411, 587–590 (2001).

    Article  CAS  Google Scholar 

  30. Turecek, R. & Trussell, L.O. Reciprocal developmental regulation of presynaptic ionotropic receptors. Proc. Natl. Acad. Sci. USA 99, 13884–13889 (2002).

    Article  CAS  Google Scholar 

  31. Suh, B.C. & Hille, B. Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35, 507–520 (2002).

    Article  CAS  Google Scholar 

  32. Hay, J.C. et al. ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374, 173–177 (1995).

    Article  CAS  Google Scholar 

  33. Holz, R.W. et al. A pleckstrin homology domain specific for phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P2 as being important in exocytosis. J. Biol. Chem. 275, 17878–17885 (2000).

    Article  CAS  Google Scholar 

  34. Micheva, K.D., Holz, R.W. & Smith, S.J. Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity. J. Cell Biol. 154, 355–368 (2001).

    Article  CAS  Google Scholar 

  35. Wiedemann, C., Schafer, T. & Burger, M.M. Chromaffin granule-associated phosphatidylinositol 4-kinase activity is required for stimulated secretion. EMBO J. 15, 2094–2101 (1996).

    Article  CAS  Google Scholar 

  36. Cochet, C. & Chambaz, E.M. Catalytic properties of a purified phosphatidylinositol-4-phosphate kinase from rat brain. Biochem. J. 237, 25–31 (1986).

    Article  CAS  Google Scholar 

  37. Hoshi, N. et al. AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat. Neurosci. 6, 564–571 (2003).

    Article  CAS  Google Scholar 

  38. Nakajo, K. & Kubo, Y. Protein kinase C shifts the voltage dependence of KCNQ/M channels expressed in Xenopus oocytes. J. Physiol. (Lond.) 569, 59–74 (2005).

    Article  CAS  Google Scholar 

  39. Shapiro, M.S. et al. Reconstitution of muscarinic modulation of the KCNQ2/KCNQ3 K+ channels that underlie the neuronal M current. J. Neurosci. 20, 1710–1721 (2000).

    Article  CAS  Google Scholar 

  40. Hermann, J., Pecka, M., von Gersdorff, H., Grothe, B. & Klug, A. Synaptic transmission at the calyx of Held under in vivo like activity levels. J. Neurophysiol. 98, 807–820 (2007).

    Article  Google Scholar 

  41. Martire, M. et al. M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J. Neurosci. 24, 592–597 (2004).

    Article  CAS  Google Scholar 

  42. Peretz, A. et al. Pre- and postsynaptic activation of M-channels by a novel opener dampens neuronal firing and transmitter release. J. Neurophysiol. 97, 283–295 (2007).

    Article  CAS  Google Scholar 

  43. Vervaeke, K., Gu, N., Agdestein, C., Hu, H. & Storm, J.F. Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release. J. Physiol. (Lond.) 576, 235–256 (2006).

    Article  CAS  Google Scholar 

  44. Lerche, C. et al. Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J. Biol. Chem. 275, 22395–22400 (2000).

    Article  CAS  Google Scholar 

  45. Xu, T. et al. Roles of alternative splicing in the functional properties of inner ear-specific KCNQ4 channels. J. Biol. Chem. 282, 23899–23909 (2007).

    Article  CAS  Google Scholar 

  46. Roura-Ferrer, M. et al. Functional implications of KCNE subunit expression for the Kv7.5 (KCNQ5) channel. Cell. Physiol. Biochem. 24, 325–334 (2009).

    Article  CAS  Google Scholar 

  47. Chambard, J.M. & Ashmore, J.F. Regulation of the voltage-gated potassium channel KCNQ4 in the auditory pathway. Pflugers Arch. 450, 34–44 (2005).

    Article  CAS  Google Scholar 

  48. Saitoh, N., Hori, T. & Takahashi, T. Activation of the epsilon isoform of protein kinase C in the mammalian nerve terminal. Proc. Natl. Acad. Sci. USA 98, 14017–14021 (2001).

    Article  CAS  Google Scholar 

  49. Rhee, J.S. et al. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108, 121–133 (2002).

    Article  CAS  Google Scholar 

  50. Trussell, L.O. Synaptic mechanisms for coding timing in auditory neurons. Annu. Rev. Physiol. 61, 477–496 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Balakrishnan and P. Brehm for comments, K. Bender and S. Kuo for technical advice and B. Kachar (National Institute on Deafness and Other Communication Disorders) for KCNQ4 antibody. L.O.T. is supported by US National Institutes of Health grants DC004450 and NS028901.

Author information

Authors and Affiliations

Authors

Contributions

H.H. conducted and analyzed all experiments. H.H. and L.O.T. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Hai Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 408 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Trussell, L. KCNQ5 channels control resting properties and release probability of a synapse. Nat Neurosci 14, 840–847 (2011). https://doi.org/10.1038/nn.2830

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2830

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing