Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Characterizing the RNA targets and position-dependent splicing regulation by TDP-43


TDP-43 is a predominantly nuclear RNA-binding protein that forms inclusion bodies in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The mRNA targets of TDP-43 in the human brain and its role in RNA processing are largely unknown. Using individual nucleotide-resolution ultraviolet cross-linking and immunoprecipitation (iCLIP), we found that TDP-43 preferentially bound long clusters of UG-rich sequences in vivo. Analysis of RNA binding by TDP-43 in brains from subjects with FTLD revealed that the greatest increases in binding were to the MALAT1 and NEAT1 noncoding RNAs. We also found that binding of TDP-43 to pre-mRNAs influenced alternative splicing in a similar position-dependent manner to Nova proteins. In addition, we identified unusually long clusters of TDP-43 binding at deep intronic positions downstream of silenced exons. A substantial proportion of alternative mRNA isoforms regulated by TDP-43 encode proteins that regulate neuronal development or have been implicated in neurological diseases, highlighting the importance of TDP-43 for the regulation of splicing in the brain.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of TDP-43 RNA binding in brain tissue from subjects with and without FTLD-TDP.
Figure 2: TDP-43 binding motif analysis.
Figure 3: The RNA splicing map of TDP-43.
Figure 4: TDP-43 regulates splicing of non-coding and protein-coding RNAs.

Accession codes




  1. 1

    Buratti, E. & Baralle, F.E. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front. Biosci. 13, 867–878 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Kuo, P.H., Doudeva, L.G., Wang, Y.T., Shen, C.K. & Yuan, H.S. Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res. 37, 1799–1808 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Buratti, E. & Baralle, F.E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343 (2001).

    CAS  Article  Google Scholar 

  4. 4

    Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Lagier-Tourenne, C., Polymenidou, M. & Cleveland, D.W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46–R64 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Igaz, L.M. et al. Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J. Biol. Chem. 284, 8516–8524 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Johnson, B.S., McCaffery, J.M., Lindquist, S. & Gitler, A.D. A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc. Natl. Acad. Sci. USA 105, 6439–6444 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Voigt, A. et al. TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PLoS ONE 5, e12247 (2010).

    Article  Google Scholar 

  10. 10

    König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  Google Scholar 

  11. 11

    Clemson, C.M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell 33, 717–726 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Cleveland, D.W. & Rothstein, J.D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806–819 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Ayala, Y.M. et al. TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 30, 277–288 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. advance online publication, 10.1038/nn.2779 (27 February 2011).

  16. 16

    Sephton, C.F. et al. Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J. Biol. Chem. 286, 1204–1215 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Strong, M.J. et al. TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol. Cell. Neurosci. 35, 320–327 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Ayala, Y.M., Misteli, T. & Baralle, F.E. TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc. Natl. Acad. Sci. USA 105, 3785–3789 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Buratti, E. et al. Nuclear factor TDP-43 can affect selected microRNA levels. FEBS J. 277, 2268–2281 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Kametani, F. et al. Identification of casein kinase-1 phosphorylation sites on TDP-43. Biochem. Biophys. Res. Commun. 382, 405–409 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Fiesel, F.C. et al. Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J. 29, 209–221 (2010).

    CAS  Article  Google Scholar 

  22. 22

    O'Connor, L. et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 17, 384–395 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Cléry, A., Blatter, M. & Allain, F.H. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 18, 290–298 (2008).

    Article  Google Scholar 

  24. 24

    Witten, J.T. & Ule, J. Understanding splicing regulation through RNA splicing maps. Trends Genet. published online, doi:10.1016/j.tig.2010.12.001 (11 January 2011).

  25. 25

    Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Hung, L.H. et al. Diverse roles of hnRNP L in mammalian mRNA processing: a combined microarray and RNAi analysis. RNA 14, 284–296 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Rockman, M.V. & Wray, G.A. Abundant raw material for cis-regulatory evolution in humans. Mol. Biol. Evol. 19, 1991–2004 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Kashi, Y. & King, D.G. Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 22, 253–259 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Legendre, M., Pochet, N., Pak, T. & Verstrepen, K.J. Sequence-based estimation of minisatellite and microsatellite repeat variability. Genome Res. 17, 1787–1796 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Wu, L.S. et al. TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis 48, 56–62 (2010).

    CAS  Google Scholar 

  31. 31

    Matter, C., Pribadi, M., Liu, X. & Trachtenberg, J.T. Delta-catenin is required for the maintenance of neural structure and function in mature cortex in vivo. Neuron 64, 320–327 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Ishiyama, N. et al. Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell 141, 117–128 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Kouchi, Z. et al. p120 catenin recruits cadherins to gamma-secretase and inhibits production of Aβ peptide. J. Biol. Chem. 284, 1954–1961 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Yang, Q. et al. Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 323, 124–127 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Ness, J.M. et al. Selective involvement of BH3-only Bcl-2 family members Bim and Bad in neonatal hypoxia-ischemia. Brain Res. 1099, 150–159 (2006).

    CAS  Article  Google Scholar 

  36. 36

    Becker, E.B. & Bonni, A. Pin1 in neuronal apoptosis. Cell Cycle 6, 1332–1335 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).

    CAS  Article  Google Scholar 

  38. 38

    Wang, Z. et al. iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol. 8, e1000530 (2010).

    Article  Google Scholar 

Download references


We thank K. Zarnack for advice and comments on the manuscript, F. Baralle, Y. Ayalla and A.D. Ambrogio for HeLa knockdown RNA, and J. Hadfield and the genomic team at CRI for Illumina sequencing. This work was supported by the European Research Council (206726-CLIP), the MRC, Slovenian Research Agency (P2-0209, J2-2197, L2-1112, Z7-3665), Wellcome Trust and MRC Strategic Grant Award (089701/Z/09/Z), Motor Neuron Disease Association, Heaton-Ellis Trust and Psychiatry Research Trust.

Author information




J.R.T. carried out TDP-43 iCLIP, microarray and PCR experiments. M.B. carried out CELF2 iCLIP. T.C. and G.R. mapped the iCLIP sequence reads to genome, evaluated random barcodes, determined cross-link clusters and annotated the data. T.C. analyzed the reproducibility, sequence and positioning of TDP-43 cross-link sites and performed gene ontology analysis. B.R., A.L.N. and V.Ž. prepared RNA from knockdown cells and brain tissue. T.H. selected, sampled and analyzed the brain samples. M.C. and M.K. analyzed splice-junction microarray data and generated the RNA splicing map. R.P. prepared the embryonic stem cells. S.C., C.E.S., B.Z., J.K. and J.U. supervised the project. J.R.T., T.C., B.R., J.K., C.E.S. and J.U. prepared the manuscript.

Corresponding author

Correspondence to Jernej Ule.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Tables 1–4 (PDF 5584 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tollervey, J., Curk, T., Rogelj, B. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14, 452–458 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing