Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Presynaptic CLC-3 determines quantal size of inhibitory transmission in the hippocampus

Abstract

The absence of the chloride channel CLC-3 in Clcn3−/− mice results in hippocampal degeneration with a distinct temporal-spatial sequence that resembles neuronal loss in temporal lobe epilepsy. We examined how the loss of CLC-3 might affect GABAergic synaptic transmission in the hippocampus. An electrophysiological study of synaptic function in hippocampal slices taken from Clcn3−/− mice before the onset of neurodegeneration revealed a substantial decrease in the amplitude and frequency of miniature inhibitory postsynaptic currents compared with those in wild-type slices. We found that CLC-3 colocalized with the vesicular GABA transporter VGAT in the CA1 region of the hippocampus. Acidification of inhibitory synaptic vesicles induced by Cl showed a marked dependence on CLC-3 expression. The decrease in inhibitory transmission in Clcn3−/− mice suggests that the neurotransmitter loading of synaptic vesicles was reduced, which we attribute to defective vesicular acidification. Our observations extend the role of Cl in inhibitory transmission from that of a postsynaptic permeant species to a presynaptic regulatory element.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Colocalization of CLC-3 with VGAT.
Figure 2: Immunogold localization of CLC-3 on inhibitory synaptic vesicle fractions.
Figure 3: Decreased miniature IPSC frequency and amplitudes in Clcn3−/− mice.
Figure 4: Buffering with Tris reduces inhibitory synaptic transmission.
Figure 5: Immunoisolation reveals importance of CLC-3 for acidification of inhibitory synaptic vesicles (SVs).
Figure 6: Differential degree and rate of acidification of inhibitory versus excitatory synaptic vesicles.
Figure 7: CLC-3 is important for the degree and the rate of acidification of inhibitory synaptic vesicles.

Similar content being viewed by others

References

  1. Stobrawa, S.M. et al. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29, 185–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Dickerson, L.W. et al. Altered GABAergic function accompanies hippocampal degeneration in mice lacking ClC-3 voltage-gated chloride channels. Brain Res. 958, 227–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Yoshikawa, M. et al. CLC-3 deficiency leads to phenotypes similar to human neuronal ceroid lipofuscinosis. Genes Cells 7, 597–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, X.Q. et al. CLC-3 channels modulate excitatory synaptic transmission in hippocampal neurons. Neuron 52, 321–333 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Maritzen, T., Keating, D.J., Neagoe, I., Zdebik, A.A. & Jentsch, T.J. Role of the vesicular chloride transporter ClC-3 in neuroendocrine tissue. J. Neurosci. 28, 10587–10598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schenck, S., Wojcik, S.M., Brose, N. & Takamori, S. A chloride conductance in VGLUT1 underlies maximal glutamate loading into synaptic vesicles. Nat. Neurosci. 12, 156–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Habela, C.W., Olsen, M.L. & Sontheimer, H. ClC3 is a critical regulator of the cell cycle in normal and malignant glial cells. J. Neurosci. 28, 9205–9217 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cuddapah, V.A. & Sontheimer, H. Molecular interaction and functional regulation of ClC-3 by Ca2+/calmodulin-dependent protein kinase II (CaMKII) in human malignant glioma. J. Biol. Chem. 285, 11188–11196 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Juge, N., Muroyama, A., Hiasa, M., Omote, H. & Moriyama, Y. Vesicular inhibitory amino acid transporter is a Cl-/gamma-aminobutyrate co-transporter. J. Biol. Chem. 284, 35073–35078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gulyás, A.I., Megias, M., Emri, Z. & Freund, T.F. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J. Neurosci. 19, 10082–10097 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Takamori, S., Riedel, D. & Jahn, R. Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles. J. Neurosci. 20, 4904–4911 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Atluri, P.P. & Ryan, T.A. The kinetics of synaptic vesicle reacidification at hippocampal nerve terminals. J. Neurosci. 26, 2313–2320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gandhi, S.P. & Stevens, C.F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Q., Cao, Y.Q. & Tsien, R.W. Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. Proc. Natl. Acad. Sci. USA 104, 17843–17848 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kerr, A.M., Reisinger, E. & Jonas, P. Differential dependence of phasic transmitter release on synaptotagmin 1 at GABAergic and glutamatergic hippocampal synapses. Proc. Natl. Acad. Sci. USA 105, 15581–15586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Edwards, R.H. The neurotransmitter cycle and quantal size. Neuron 55, 835–858 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Hnasko, T.S. et al. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65, 643–656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grønborg, M. et al. Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J. Neurosci. 30, 2–12 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hell, J.W., Maycox, P.R. & Jahn, R. Energy dependence and functional reconstitution of the gamma-aminobutyric acid carrier from synaptic vesicles. J. Biol. Chem. 265, 2111–2117 (1990).

    CAS  PubMed  Google Scholar 

  20. Kraushaar, U. & Jonas, P. Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J. Neurosci. 20, 5594–5607 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bartos, M., Vida, I., Frotscher, M., Geiger, J.R. & Jonas, P. Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci. 21, 2687–2698 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deriy, L.V. et al. The granular chloride channel ClC-3 is permissive for insulin secretion. Cell Metab. 10, 316–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deriy, L.V. et al. Disease-causing mutations in the cystic fibrosis transmembrane conductance regulator determine the functional responses of alveolar macrophages. J. Biol. Chem. 284, 35926–35938 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, Q., Petersen, C.C. & Nicoll, R.A. Effects of reduced vesicular filling on synaptic transmission in rat hippocampal neurones. J. Physiol. (Lond.) 525, 195–206 (2000).

    Article  CAS  Google Scholar 

  25. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang, P. et al. Regulation of human CLC-3 channels by multifunctional Ca-/calmodulin–dependent protein kinase. J. Biol. Chem. 276, 20093–20100 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Hell, J.W. & Jahn, R. in Cell Biology. A Laboratory Handbook Vol. 1 (ed. Celis, J.E.) 567–574 (Academic, San Diego, 1994).

  28. Maycox, P.R., Deckwerth, T., Hell, J.W. & Jahn, R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J. Biol. Chem. 263, 15423–15428 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Fox, S. Takamori, R. Edwards, L. Farmer and R. Sarac for conversations, V. Bindokas and P. Toth for technical help with microscopy, Y. Chen for help with immuno-electron microscopy, and F. Lamb (Univ. Iowa) for the Clcn3−/− strain. The study was supported by NIH R01 GM36823 and NIH R01 DK 080364 to D.J.N.

Author information

Authors and Affiliations

Authors

Contributions

V.R., L.V.D. and D.J.N. designed the project, analyzed the data and wrote the manuscript. V.R, L.V.D., P.D.S., B.L. and E.A.G. performed the experiments.

Corresponding author

Correspondence to Deborah J Nelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 7515 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riazanski, V., Deriy, L., Shevchenko, P. et al. Presynaptic CLC-3 determines quantal size of inhibitory transmission in the hippocampus. Nat Neurosci 14, 487–494 (2011). https://doi.org/10.1038/nn.2775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2775

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing